Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (10): 43-48    DOI: 10.11925/infotech.1003-3513.2010.10.07
article Current Issue | Archive | Adv Search |
Research on Extraction of Hot Keywords
Cheng Xiao, Lu Bei, Chen Zhiqun
Institute of Computer Application Technology, Hangzhou Dianzi University, Hangzhou 310018, China
Download: PDF(415 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

According to extraction of hot keywords in the multi-phase candidate keywords, the paper tries mass data process,determines the meaningless words based on the timing of statistical law, and proposes Union Variance (UV) concept. The HK (Hot Keywords) formula is constructed based on multi-feature fusion to achieve the extraction of hot keywords. Experimental results show that this method is efficient in the process of hot subject extraction.

Key wordsOnline      public      opinion      Chinese      word      segmentation      Keywords      Weighting      calculation     
Received: 16 August 2010      Published: 04 January 2011
: 

G353.1

 

Cite this article:

Cheng Xiao, Lu Bei, Chen Zhiqun. Research on Extraction of Hot Keywords. New Technology of Library and Information Service, 2010, 26(10): 43-48.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2010.10.07     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2010/V26/I10/43


[1] CNNIC发布《第26次中国互联网络发展状况统计报告》 . . http://research.cnnic.cn/html/1279173730d2350.html.

[2] 陆蓓,程肖,谌志群.互联网舆情挖掘研究述略
[J]. 情报资料工作 ,2010(2):41-45.

[3] 邱立坤,陶然,龙志炜,等.面向互联网的话题发现技术研究 . 见: 全国网络与信息安全技术研讨会论文集(下册) . 青岛:中国通信学会,2007:373-379.

[4] 李恒训,张华平,秦鹏,等.基于主题词的网络热点话题发现 . 见: 第五届全国信息检索学术会议论文集 .上海:中国中文信息学会,2009:134-143.

[5] Zhang H P, Liu Q, Yu H K, et al.Chinese Name Entity Recognition Using Role Model
[J]. International Journal of Computational Linguistics and Chinese Language Processing, 2003,8(2):29-60.

[6] 化柏林.知识抽取中的停用词处理技术
[J]. 现代图书情报技术 ,2007(8):48-51.

[7] 曾依灵,许洪波,白硕.网络文本主题词的提取与组织研究
[J]. 中文信息学报 ,2008,22(3):64-70,80.

[8] 刘星星,何婷婷,龚海军,等.网络热点事件发现系统的设计
[J]. 中文信息学报 ,2008,22(6):80-85.

[9] 陆蓓,程肖,谌志群.基于改进蚁群聚类的热点主题发现算法研究
[J]. 现代图书情报技术 ,2010(4):66-71.

[10] 丁伟莉,赵华,郑德权,等.中文Bolg热门话题检测与排序技术研究 . 见: 中国中文信息学会二十五周年学术会议论文集 . 北京:中国中文信息学会,2006:282-289.

[1] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[3] Xiuxian Wen,Jian Xu. Research on Product Characteristics Extraction and Hedonic Price Based on User Comments[J]. 数据分析与知识发现, 2019, 3(7): 42-51.
[4] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[5] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[6] Qikai Cheng,Jiamin Wang,Wei Lu. Discovering Domain Vocabularies Based on Citation Co-word Network[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
[7] Yujie Cao,Jin Mao,Rongqing Pan,Zhichao Ba,Gang Li. Analyzing Characteristics of Interdisciplinary Research Evolutions: Case Study of Medical Informatics[J]. 数据分析与知识发现, 2019, 3(5): 107-116.
[8] Jiaming Liang,Jie Zhao,Zhou Jianlong,Zhenning Dong. Detecting Collusive Fraudulent Online Transaction with Implicit User Behaviors[J]. 数据分析与知识发现, 2019, 3(5): 125-138.
[9] Qiang Liu,Yunwei Chen,Zhiqiang Zhang. Methods and Applications of Norwegian Model for Science and Technology Evaluation[J]. 数据分析与知识发现, 2019, 3(5): 41-50.
[10] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[11] Jiang Wu,Guanjun Liu,Xian Hu. An Overview of Online Medical and Health Research: Hot Topics, Theme Evolution and Research Content[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[12] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[13] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[14] Lin Wang,Ke Wang,Jiang Wu. Public Opinion Propagation and Evolution of Public Health Emergencies in Social Media Era: A Case Study of 2018 Vaccine Event[J]. 数据分析与知识发现, 2019, 3(4): 42-52.
[15] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn