Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (12): 58-63    DOI: 10.11925/infotech.1003-3513.2010.12.10
article Current Issue | Archive | Adv Search |
Study on Noun Phrase of “N1 +N2”Structure in Search Engine Query Logs
Liu Zhijie, Lv Xueqiang, Cheng Tao
Chinese Information Processing Research Center, Beijing Information Science & Technology University, Beijing 100101, China
Download: PDF(531 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

Based on query logs, comprehensive description of the “N1+N2” structure noun phrase form is given according to the characteristics of corpus itself,including the characteristics of each element and syntactic function.And the basic methods of mining and proofreading are given about the type of noun phrase. Through the analysis of experimental results, the authors further illustrate that the study of phrase is important in search engine.

Key words“N1+N2”structure      Query      log      Noun      phrase      Syntactic      function     
Received: 26 October 2010      Published: 07 January 2011



Cite this article:

Liu Zhijie, Lv Xueqiang, Cheng Tao. Study on Noun Phrase of “N1 +N2”Structure in Search Engine Query Logs. New Technology of Library and Information Service, 2010, 26(12): 58-63.

URL:     OR

[1] 吕学强,苏祺,孙斌,等.搜索引擎用短语词典建设
[J]. 清华大学学报:自然科学版,2005,45(9):1892-1895.

[2] 孙艳.“名词1+名词2”形式研究
[J]. 语文学刊,2009(17):119-121.

[3] 刁晏斌. 当代汉语中新的“名1+名2”形式——名词陈述化的一种新形式
[J]. 语言与翻译(汉文),2005(4): 23-27.

[4] Church K W. A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text. In: Proceedings of the 2nd Conference on Applied Natural Language Processing,Austin,Texas,USA. 1988:136-143.

[5] Abney S P. Parsing by Chunks.//Berwick R, Abney S, Tenny C. Principle-Based Parsing
[M]. Dordrecht: Kluwer Academic Publishers,1991:257-278.

[6] 周蕾,朱巧明. 基于统计和规则的未登录词识别方法研究
[J]. 计算机工程,2007,33(8):196-198.

[7] 焦丽,路波.基于五大因素的搜索引擎优化研究
[J]. 中国管理信息化,2009,12(17):120-122.

[8] 余慧佳,刘奕群,张敏,等. 基于大规模日志分析的网络搜索引擎用户行为研究
[J]. 中文信息学报,2007,21(1):109-113.

[1] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[4] Xuhui Li,Yang Liu. Review of Spatio-temporal Data Modeling Methods[J]. 数据分析与知识发现, 2019, 3(3): 1-13.
[5] Zhiqiang Wu,Zhongming Zhu,Wei Liu,Sili Wang. Research and Practice on the Extension of Knowledge Analysis and Visualization Function in CSpace[J]. 数据分析与知识发现, 2019, 3(3): 112-119.
[6] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[7] Mingqing Zhao,Shengqiang Wu. Research on Stock Market Weighted Prediction Method Based on Micro-blog Sentiment Analysis[J]. 数据分析与知识发现, 2019, 3(2): 43-51.
[8] Sisi Gui,Xiaojuan Zhang,Xin Wang. Automatically Rating Query Ambiguity with Alt-Metrics[J]. 数据分析与知识发现, 2019, 3(2): 79-89.
[9] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[10] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[11] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[12] Dan Wu,Liuxing Lu. Semantic Changes of Queries from Cross-device Searching[J]. 数据分析与知识发现, 2018, 2(8): 69-78.
[13] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[14] Guanghui Ye,Jinglan Hu,Jian Xu,Lixin Xia. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[15] Xiaodong Qian,Min Li. Identifying E-commerce User Types Based on Complex Network Overlapping Community[J]. 数据分析与知识发现, 2018, 2(6): 79-91.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938