Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (1): 57-62    DOI: 10.11925/infotech.1003-3513.2011.01.09
article Current Issue | Archive | Adv Search |
Study on Web Retrieval Query Fusion Based on Relevance Feedback
Jing Jing1, Hong Ying2, Jiang Yuanyuan3, Gao Xiaofeng4
1. Business School, Nankai University, Tianjin 300071, China;
2. Library of Tianjin Conservatory of Music, Tianjin 300071, China;
3. Editorial Office, Journal of Henan Agricultural University, Zhengzhou 450002, China;
4. Tangshan Railway Vehicles Co. Ltd., Tangshan 063035, China
Download: PDF(371 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper introduces the combination of query fusion and relevance feedback methods.By analyzing previous TopN documents selection strategy, it puts forward a query fusion algorithm using correlation coefficient to select a variable number of TopN documents in order to extend query, which is called variable TopN feedback-based query fusion algorithm. Fixed and variable TopN query fusion experiments are analyzed separately, and the test results show that the variable TopN feedback method improves the retrieval performance to some extent.

Key wordsQuery fusion      Relevance feedback      Correlation coefficient      Meta-search engine     
Received: 11 November 2010      Published: 12 February 2011
: 

TP393.09

 

Cite this article:

Jing Jing, Hong Ying, Jiang Yuanyuan, Gao Xiaofeng. Study on Web Retrieval Query Fusion Based on Relevance Feedback. New Technology of Library and Information Service, 2011, 27(1): 57-62.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.01.09     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V27/I1/57


[1] Bast H, Majumdar D, Schenkel R, et al. IO-Top-k: Index-access Optimized Top-k Query Processing. In: Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul. Berlin: Springer-verlag, 2006: 475-486.

[2] 余晋,邓志鸿,田敬,等.PinkySearch:基于聚类的元搜索引擎
[J]. 计算机科学 ,2005,32(7):408-412.

[3] 崔舒宁,冯博琴.融合搜索引擎结果集的模糊积分算法
[J]. 西安交通大学学报 ,2006,40(2):175-178.

[4] Efthimiadis E N. Query Expansion
[J]. Annual Review of Information Systems and Technology, 1996, 1(31): 121-187.

[5] Jin R, Valizadegan H, Li H. Ranking Refinement and Its Application to Information Retrieval. In: Proceedings of the 17th International Conference on World Wide Web. New York: ACM, 2008: 397-406.

[6] Egozi O, Gabrilovich E, Markovitch S. Concept-based Feature Generation and Selection for Information Retrieval. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Chicago: AAAI, 2008.

[7] Wu Z H, Meng W Y, Yu C, et al. Towards a Highly-Scalable and Effective Metasearch Engine. New York: Department of Computer Science, Binghamton University, 2001.

[8] Shokouhi M, Azzopardi L, Thomas P. Effective Query Expansion for Federated Search. In: Proceedings of SIGIR. Boston: ACM, 2009.

[9] Serdyukov P. Query Routing in Peer-to-Peer Web Search. Saarland: Saarland University,2005.

[10] 李培.基于词序的多关键词加权检索融合研究
[J]. 现代图书情报技术 ,2008(10):32-37.

[11] Metasearch Search Engine-Search.com. http://www.search.com.

[12] Ask.com-What’s Your Question?. http:// www.ask.com.

[13] Google. http://www.google.com.hk.

[1] Xing Xiaoyun, Wei Jing. Study on the Dynamic Evolution of an OSN Structure and the Impacts on Word of Mouth[J]. 现代图书情报技术, 2011, 27(9): 60-65.
[2] Feng Ping, Huang Mingxuan. Query Expansion of Pseudo Relevance Feedback Based on Feature Terms Extraction and Correlation Fusion[J]. 现代图书情报技术, 2011, 27(1): 52-56.
[3] Wang Meiwen. Design and Implementation of Automatic Classification Meta-search Engine Based on Ontology[J]. 现代图书情报技术, 2008, 24(9): 58-63.
[4] Wang Nan,Zhao Pengwei,Dou Yongxiang,Qin Chunxiu,Zhao Fei. Study on Feedback Noise and Suppression Algorithm in Image Semantic Retrieval[J]. 现代图书情报技术, 2007, 2(10): 42-46.
[5] Yuan Fuyong,Chen Jinsen,Lin Haixia . A Study on Intelligent Meta-search Engine Based on XML[J]. 现代图书情报技术, 2006, 1(7): 29-32.
[6] Chen Zuqin,Zheng Hong . Citation Analysis System of China Database Based  on Meta-search Engine[J]. 现代图书情报技术, 2006, 1(11): 65-68.
[7] Yan Qinghong,Peng Yuxing. A New Image Retrieval Algorithm in Digital Library[J]. 现代图书情报技术, 2005, 21(12): 30-33.
[8] Song Lingli,Cheng Ying. About Term Ranking Methods in Relevance Feedback[J]. 现代图书情报技术, 2004, 20(8): 44-47.
[9] Li Ming. Studies on Chinese Meta-Search Widewaysearch[J]. 现代图书情报技术, 2003, 19(5): 48-50.
[10] Chen Dingquan. User Relevance Feedback for Information Retrieval System[J]. 现代图书情报技术, 2002, 18(4): 33-35.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn