Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (2): 42-47    DOI: 10.11925/infotech.1003-3513.2011.02.07
article Current Issue | Archive | Adv Search |
A Collection Method for Multi-granularity Web Usage Data
Zhao Jie1,2, Dong Zhenning1, Zhang Shaqing1, Xiao Nanfeng2
1. School of Management, Guangdong University of Technology, Guangzhou 510520, China;
2. School of Computer Science & Engineering, South China University of Technology, Guangzhou 510641, China
Download: PDF(732 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

This paper proposes a new multi-granularity collection method for user behavior data which collects data through configurable server plug-in. The experiment results prove that the method can enhance quantity of Web usage mining data, simplify data cleaning and give multi-granularity information for the following mining,and provide high quality data for Web user behavior analysis.

Key wordsWeb usage mining      Data collection      Multi-granularity     
Received: 20 December 2010      Published: 25 March 2011
: 

TP393

 

Cite this article:

Zhao Jie, Dong Zhenning, Zhang Shaqing, Xiao Nanfeng. A Collection Method for Multi-granularity Web Usage Data. New Technology of Library and Information Service, 2011, 27(2): 42-47.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.02.07     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V27/I2/42


[1] Srivastava J,Cooley R, Deshpande M, et al.Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data
[J].SIGKDD Explorations, 2000,1(2):12-23.

[2] Barth M, Skubacz M, Stolz C. Web Performance Indicator by Implicit User Feedback - Application and Formal Approach . In: Proceedings of the 6th International Conference on Web Information Systems Engineering, Web Information Systems Engineering – WISE 2005. Berlin: Springer, 2005:689-700.

[3] Cooley R, Mobasher B, Srivastava J. Data Preparation for Mining World Wide Web Browsing Patterns
[J].Journal of Knowledge and Information Systems,1999,1(1):5-32.

[4] 阮备军. Web使用挖掘中若干关键问题研究 . 上海:复旦大学,2004.

[5] 刘立军,周军,梅红岩. Web使用挖掘的数据预处理
[J]. 计算机科学 , 2007,34(5):200-201,204.

[6] 邢东山,沈钧毅.Web使用挖掘的数据采集
[J]. 计算机工程 , 2002,28(1):39-41.

[7] Araya S, Silva M, Weber R. A Methodology for Web Usage Mining and Its Application to Target Group Identification
[J]. Fuzzy Sets and Systems, 2004,148(1):139-152.

[8] Tao Y H, Hong T P, Su Y M.Web Usage Mining with Intentional Browsing Data
[J]. Expert Systems with Applications: An International Journal, 2008,34(3): 1893-1904.

[9] Tao Y H, Hong T P, Lin W H. A Practical Extension of Web Usage Mining with Intentional Browsing Data Toward Usage
[J]. Expert Systems with Applications: An International Journal,2009,36(2):3937-3945.

[10] Kim H K, Lee R Y. Frameworks for Web Usage Mining . //Studies in Computational Intelligence
[M]. Berlin,Heidelberg: Springer,2009:121-134.

[11] 郭岩,白硕,于满泉.Web使用信息挖掘综述
[J]. 计算机科学 ,2005,32(1):1-7.

[12] Liu H B, Keelj V. Combined Mining of Web Server Logs and Web Contents for Classifying User Navigation Patterns and Predicting Users’ Future Requests
[J]. Data & Knowledge Engineering, 2007,61(2):304-330.

[13] Wang X, Li B W. Intelligent Knowledge Recommendation System Based on Web Log and Cache Data
[J]. Lecture Notes in Computer Science, 2006,4181:48-56.

[14] Inuzuka N, Hayakawa J I. A Unified Approach to Web Usage Mining Based on Frequent Sequence Mining . In: Proceedings of KES’07 Knowledge-Based Intelligent Information and Engineering Systems and the XVII Italian Workshop on Neural Networks. Heidelberg,Berlin: Springer-Verlag,2007:987-994.

[15] Perugini S,Ramakrishnan N. Mining Web Functional Dependencies for Flexible Information Access
[J]. Journal of the American Society for Information Science and Technology,2007,58(12):1805-1819.

[16] 赵洁,肖南峰,钟军锐. 基于贝叶斯网络和行为日志挖掘的行为信任控制
[J]. 华南理工大学学报:自然科学版 ,2009, 37(5):94-100.

[17] 赵洁,肖南峰,钟军锐.Web使用挖掘在信任管理中的应用
[J]. 计算机工程 ,2009,35(24):33-35, 38.

[1] Li Dan, Yan Xiaodi, Wei Qingshan . Practice of Data Collection in Building Characteristic Digital Resources Based on Drupal[J]. 现代图书情报技术, 2015, 31(7-8): 148-154.
[2] Li Xiangdong, Ba Zhichao, Huang Li. Allocation and Multi-granularity[J]. 现代图书情报技术, 2015, 31(5): 42-49.
[3] Song Meiqing. Research on Multi-granularity Users' Preference Mining Based on Collaborative Filtering Personalized Recommendation[J]. 现代图书情报技术, 2015, 31(12): 28-33.
[4] Zhao Jie, Mo Zan, Liu Hongwei, Zhang Shaqing, Dong Zhenning. Web Usage Mining Using Reduction of Knowledge Granule[J]. 现代图书情报技术, 2013, 29(2): 50-56.
[5] Xia Tian. Overview of Research on Data Collection from Ajax Sites[J]. 现代图书情报技术, 2010, 26(3): 52-57.
[6] Zou Rong,Fan Aihong,Jiang Airong. Construction of the Academic Papers Management System with DSpace[J]. 现代图书情报技术, 2009, (10): 90-94.
[7] Li Peng,Qiao Xiaodong,Han Feng,Wang Jitian,Liang Jian,Zhang Yinsheng . Data Acquisition Based on User Browsing Behaviors and its Application[J]. 现代图书情报技术, 2008, 24(11): 56-59.
[8] Zhang Zhijuan,Liu Xinwang. An Information Retrieval Model of SGML Format Documents Based on Multi-granularity 2-tuple Linguistic Approach[J]. 现代图书情报技术, 2007, 2(7): 27-31.
[9] Liu Song . Study of Personalized Recommendation System on Internet[J]. 现代图书情报技术, 2007, 2(4): 35-38.
[10] Wang Yuanyuan,Zhong Yongheng . The Architecture of Web Log Mining System Based on SQL Server 2005[J]. 现代图书情报技术, 2006, 1(5): 58-61.
[11] Tao Jianwen. Algorithm Design for Multi-agent Based Intelligent Recommendation System[J]. 现代图书情报技术, 2006, 1(12): 49-53.
[12] Kan Detao,Yan Bin. Programming Realization of Data Collection and Retrieval in the Disk Record[J]. 现代图书情报技术, 2002, 18(5): 37-39.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn