Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (3): 38-44    DOI: 10.11925/infotech.1003-3513.2011.03.06
Current Issue | Archive | Adv Search |
Scholars Knowledge Map Construction and Analysis Based on CSSCI
Hu Yuanjiao, Wang Hao
Department of Information Management,Nanjing University,Nanjing 210093, China
Download: PDF(732 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  In order to promote the academic cooperation and development, provide factual basis for the inter-scholar cooperation and obtain analysis conclusion for supporting decision, this paper tries to introduce the Ontology mechanism into the knowledge organization of CSSCI academic resource for organizing concepts related to scholars knowledge map by object-oriented approach, so that to establish scholars knowledge map concept model based on CSSCI. Then the association analysis and knowledge mining are used to discover the potential cooperating probability between scholars and find the related authors who can influence the core authors academically in some discipline field. At the same time the authors group is classified definitely based on the relationship, which can strengthen related field’s research and cooperation, and realize knowledge complement as well as achievement reference and inspiration.
Key wordsCSSCI      Ontology      Knowledge map      Scholar association analysis      Semantic annotation     
Received: 30 January 2011      Published: 05 May 2011
: 

G250

 

Cite this article:

Hu Yuanjiao, Wang Hao. Scholars Knowledge Map Construction and Analysis Based on CSSCI. New Technology of Library and Information Service, 2011, 27(3): 38-44.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.03.06     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V27/I3/38

[1] 南京大学中国社会科学研究评价中心[EB/OL]. [2010-04-02]. http://cssci.nju.edu.cn.

[2] 王昊.信息资源网络模型及应用[M].南京: 南京大学出版社,2010.

[3] 金莹,邓三鸿.基于关键词被引聚类的人文社会科学学科分析[J].现代图书情报技术,2006(9):43-48,52.

[4] 金莹,邓三鸿.基于主题聚类的社会科学地图[J].图书情报工作,2007,51(4):104-108.

[5] 王昊,苏新宁.基于本体的CSSCI学术资源网络模型构建及其应用研究[J].情报学报,2010,29(2):331-341.

[6] 林泽斐.本体概念模型构建理论研究综述[J].情报探索,2009(5):30-33.

[7] 凌海云,左志宏,陈兰,等.语义标注元数据及其抽取技术[J].计算机应用研究,2004,21(7):147-149.

[8] Marinica C,Guillet F. Knowledgebased Interactive Postmining of Association Rules Using Ontologies[J]. IEEE Transactions on Knowledge & Data Engineering,2010, 22(6):784-797.

[9] 王昊, 苏新宁. 基于CSSCI本体的学科关联分析[J].现代图书情报技术, 2010(10):10-16.
[1] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[4] Shengchun Ding,Linlin Hou,Ying Wang. Product Knowledge Map Construction Based on the E-commerce Data[J]. 数据分析与知识发现, 2019, 3(3): 45-56.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Ping Liu,Yanan Li,Cong Yu. Building Interactive Knowledge Map for Academic Search[J]. 数据分析与知识发现, 2018, 2(12): 43-51.
[11] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[12] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[13] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[14] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[15] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn