Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (5): 49-54    DOI: 10.11925/infotech.1003-3513.2011.05.08
Current Issue | Archive | Adv Search |
The Online Comments Signature Words Selection with the Title and Description of Goods
Liang Changyong, Wang Qianqian, Lu Wenxing, Ding Yong
School of Management, Hefei University of Technology, Hefei 230009, China
Download: PDF(1091 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  At present, title and description of goods are rarely considered in the research of online reviews at home and abroad, this makes the mining process blindly and mining results are not high accurate. In this article, the authors use the cluster analysis method, consider the title and description, set up a three-level mining model to analyze the online comments, at the same time, a location-clustering-algorithm is proposed. Experimental results show that the method improves the accuracy of mining and reduces the mining time.
Key wordsCluster analysis      Signature words      Location      K-center-algorithm     
Received: 16 March 2011      Published: 11 July 2011
: 

TP391

 

Cite this article:

Liang Changyong, Wang Qianqian, Lu Wenxing, Ding Yong. The Online Comments Signature Words Selection with the Title and Description of Goods. New Technology of Library and Information Service, 2011, 27(5): 49-54.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.05.08     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V27/I5/49

[1] Nicholls C, Song F. Comparison of Feature Selection Methods for Sentiment Analysis . In:Proceedings of the Canadian Conference on Artificial Intelligence,Advances in Artificial Intelligence Lecture Notes in Computer Science. 2010: 286-289.

[2] Li Z, Zhang M,Ma S,et al. Automatic Extraction for Product Feature Words from Comments on the Web . In: Proceedings of the 5th Asia Information Retrieval Symposium on Information Retrieval Technology.2009:112-123.

[3] Yang Y,Wu Y,Li J.Text Similarity Calculation Based on Potential Feature Words[J]. Computer Engineering and Design, 2011,14(2):240-245.

[4] 余传明.从用户评论中挖掘产品属性——基于SOM的实现[J]. 现代图书情报技术, 2009(5):3-6.

[5] 钟敏娟,万常选,焦贤沛.基于聚类和词组抽取的XML查询扩展[J]. 情报学报, 2010,29(4):11-13.

[6] Kobayashi N, Inui K, Matsumoto Y,et al. Collecting Evaluative Expressions for Opinion Extraction . In:Proceedings of the 1st Conference of International Joint Conference on Natural Language Processing.2004: 596-605.

[7] 姚天昉,程希文,徐飞玉,等.文本意见挖掘综述[J]. 中文信息学报, 2008,22(3):71-80.

[8] Han J,Kamber M.Date Mining: Concepts and Techniques[M].北京:机械工业出版,2001:234-235.
[1] Qingtian Zeng,Mingdi Dai,Chao Li,Hua Duan,Zhongying Zhao. Discovering Important Locations with User Representation and Trace Data[J]. 数据分析与知识发现, 2019, 3(6): 75-82.
[2] Zhuchen Liu,Hao Chen,Yanhua Yu,Jie Li. Extracting Keywords with TextRank and Weighted Word Positions[J]. 数据分析与知识发现, 2018, 2(9): 74-79.
[3] Dongmei Mu,Shan Jin,Yuanhong Ju. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[4] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[5] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[6] Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian,Shaozhong Wu,Lihua Li. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[7] Yue He,Aixin Wang,Yue Feng,Li Wang. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[8] Runwen Chen,Yong Qiu,Wenbin Huang,Jun Wang. Analyzing Private College Students’ Online Lifestyle with Web-logs[J]. 数据分析与知识发现, 2017, 1(8): 31-38.
[9] Xueying Wang,Zixuan Zhang,Hao Wang,Sanhong Deng. Evaluating Brands of Agriculture Products: A Literature Review[J]. 数据分析与知识发现, 2017, 1(7): 13-21.
[10] Jiawang Cui,Chunwang Li. Identifying Semantic Relations of Clusters Based on Linked Data[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[11] Sun He,Li Shuqin,Lv Xueqiang,Liu Kehui. Retrieving Geographic Information for Micro-blog’s City Complaints[J]. 现代图书情报技术, 2016, 32(3): 58-66.
[12] Deng Zhiwen,Du Pingping,Mu Yafeng. Library Active-information Service System Based on Location Awareness[J]. 现代图书情报技术, 2016, 32(2): 102-110.
[13] Hong Ma, Yongming Cai. A CA-LDA Model for Chinese Topic Analysis: Case Study of Transportation Law Literature[J]. 数据分析与知识发现, 2016, 32(12): 17-26.
[14] Qun Zhang, Hongjun Wang, Lunwen Wang. Classifying Short Texts with Word Embedding and LDA Model[J]. 数据分析与知识发现, 2016, 32(12): 27-35.
[15] Xu Yuemei,Li Yang,Liang Ye,Cai Lianqiao. Analyzing Evolution of News Topics with Manifold Learning[J]. 现代图书情报技术, 2016, 32(10): 59-69.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn