Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (5): 77-82    DOI: 10.11925/infotech.1003-3513.2011.05.12
Current Issue | Archive | Adv Search |
Recognizing Named Entity from Free-text Customer Reviews——A Maximum Entropy Model-based Approach
Yu Chuanming1,2, Huang Jianqiu2, Guo Fei2
1. School of Information Safety and Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China;
2. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Download: PDF(921 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper introduces the concept of Named Entity Recognition (NER), analyzes two basic approaches, the rule-based approach and the statistical approach, and conducts an empirical study on Chinese dish name recognition based on the theory of Maximum Entropy Model (MEM). According to the characteristics of Chinese named entity, 6 feature templates are designed. Experimental results show that adding tagging features to the basic simple feature template can efficiently improve the performance of Named Entity Recognition. The features in order to improve recognition performance are as follow: tagging features, combination of POS features, forward POS dependency features and word form features.
Key wordsNamed entity recognition      Maximum entropy model      User reviews      Text mining     
Received: 28 April 2011      Published: 11 July 2011



Cite this article:

Yu Chuanming, Huang Jianqiu, Guo Fei. Recognizing Named Entity from Free-text Customer Reviews——A Maximum Entropy Model-based Approach. New Technology of Library and Information Service, 2011, 27(5): 77-82.

URL:     OR

[1] Grishman R, Sundheim B. Message Understanding Conference-6: A Brief History . In: Proceedings of the 16th International Conference on Computational Linguistics (COLING), Kopenhagen.1996:466-471.

[2] Srihari R K, Li W, Cornell T, et al. InfoXtract: A Customizable Intermediate Level Information Extraction Engine [J]. Journal of Natural Language Engineering, 2008, 14(1): 33-69.

[3] Hirschman L, Gaizauskas R. Natural Language Question Answering:The View from Here [J]. Journal of Natural Language Engineering, 2001, 7(4):275-300.

[4] Frost R A, Hafiz R, Callaghan P. Parser Combinators for Ambiguous Left-Recursive Grammars . In: Proceedings of the 10th International Symposium on Practical Aspects of Declarative Languages (PADL), ACM-SIGPLAN, San Francisco.2008,4902: 167-181.

[5] Geer D. Statistical Translation Gains Respect [J]. IEEE Computer, 2005,38(10):18-21.

[6] Halpin H, Robu V, Shepherd H. The Complex Dynamics of Collaborative Tagging . In: Proceedings of the 16th International Conference on the World Wide Web (WWW'07), Banff, Canada. New York, NY, USA:ACM Press, 2007:211-220.

[7] Manning C D, Schütze H. Foundations of Statistical Natural Language Processing [M]. 1st Edition. MIT Press, 1999.

[8] Farmakiotou D, Karkaletsis V, Koutsias J, et al. Rule-based Named Entity Recognition for Greek Financial Texts . In: Proceedings of the Workshop on Computational Lexicography and Multimedia Dictionaries. 2000:75-78.

[9] 李楠,郑荣廷,吉久明,等.基于启发式规则的中文化学物质命名识别研究[J]. 现代图书情报技术 ,2010(5):13-17.

[10] Yang T. Computational Verb Decision Trees [J]. International Journal of Computational Cognition, 2006, 4 (4): 34-46.

[11] Bechet F, Nasr A, Genet F. Tagging Unknown Proper Names Using Decision Trees . In: Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, HongKong, China.2000:77-84.

[12] Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition .// Waibel A, Lee K F. Readings in Speech Recognition[M]. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 1990: 267-296.

[13] Zhou G, Su J. Named Entity Recognition Using an HMM-based Chunk Tagger . In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics.2002:473-480.

[14] Uffink J. Can the Maximum Entropy Principle be Explained as a Consistency Requirement? [J]. Studies in History and Philosophy of Modern Physics, 1995, 26(3): 223-261.

[15] Borthwick A E. A Maximum Entropy Approach to Named Entity Recognition . New York, NY, USA:New York University, 1999.

[16] Moens M F. Information Extraction: Algorithms and Prospects in a Retrieval Context [M]. New York: Springer, 2006: 105-106.

[17] Berger A L, Pietra V J D, Pietra S A D. A Maximum Entropy Approach to Natural Language Processing [J]. Computational Linguistics, 1996, 22(1):39-71.

[18] 曲晓棠, 沈晓红. 基于最大熵模型的中文命名实体识别研究[J]. 科技信息 ,2008(30):15-17.
[1] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[2] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[3] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[4] Guijun Yang,Xue Xu,Fuqiang Zhao. Predicting User Ratings with XGBoost Algorithm[J]. 数据分析与知识发现, 2019, 3(1): 118-126.
[5] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[6] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[7] Ning Zhang,Lemin Yin,Lifeng He. Impacts of “Poster-Follower” Sentiment on Stock Market Performance[J]. 数据分析与知识发现, 2018, 2(6): 1-12.
[8] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[9] Qiangbing Wang,Chengzhi Zhang. Constructing Users Profiles with Content and Gesture Behaviors[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[10] Xiufang Xie,Xiaolin Zhang. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[11] Yao Zhaoxu,Ma Jing. Extracting Topic and Opinion from Microblog Posts with New Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
[12] Lan Qiujun,Liu Wenxing,Li Weikang,Hu Xingye. Sentiment Analysis of Financial Forum Textual Message[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[13] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[14] Lin Yuanyuan,Zhan Hongfei,Yu Junhe,Li Changjiang,Zhang Fan. Using Product Reviews to Analyze Sentiment Fluctuation of Consumer[J]. 现代图书情报技术, 2016, 32(11): 44-53.
[15] Zhao Dongxiao,Wang Xiaoyue,Bai Rujiang,Liu Ziqiang. Semantic Text Mining Methodologies for Intelligence Analysis[J]. 现代图书情报技术, 2016, 32(10): 13-24.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938