Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (7/8): 41-46    DOI: 10.11925/infotech.1003-3513.2011.07-08.08
Current Issue | Archive | Adv Search |
Research on the Sensitivity and Specificity of Search Engines
Zhang Liyi, Chen Mingying
School of Information Management, Wuhan University, Wuhan 430072, China
Download: PDF(495 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper analyzes the evaluation indexes of Web search engines using the epidemiological screening theory without gold standard. User experience score and user judgment are used as the prior information of Bayes estimation. Then it maks use of the MCMC(Markov Chain Monte Carlo)technology to estimate the sensitivity,specificity and detection rate of Baidu and Google(Simplified Chinese).
Key wordsSearch engine      Screening      Sensitivity      Specificity      User experience     
Received: 29 April 2011      Published: 09 October 2011
: 

TP393

 

Cite this article:

Zhang Liyi, Chen Mingying. Research on the Sensitivity and Specificity of Search Engines. New Technology of Library and Information Service, 2011, 27(7/8): 41-46.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.07-08.08     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V27/I7/8/41

[1] Tingting Zhang,Yuxiang Zhao,Qinghua Zhu. Mining User Preferences in Crowdsourcing Community with Sensitivity Analysis[J]. 数据分析与知识发现, 2018, 2(5): 23-31.
[2] Liu Tong,Ni Weijian,Liu Mei. Identifying Terminology from Search Engine Query Logs[J]. 现代图书情报技术, 2016, 32(2): 25-33.
[3] Ren Ke,Lu Wei,Ding Heng. The Impacts of Query Specificity on Information Retrieval[J]. 现代图书情报技术, 2016, 32(11): 34-43.
[4] Tong Guoping, Sun Jianjun. User Behavior Analysis Based on Search Engine Log[J]. 现代图书情报技术, 2015, 31(7-8): 80-88.
[5] Wang Xiwei, Zhao Dan, Yang Mengqing, Wei Junwei. Indices and Empirical Research on Search Engine Optimization of the Industry Websites: An Analysis from the Perspective of Information Ecology[J]. 现代图书情报技术, 2015, 31(3): 75-83.
[6] Tang Xiangbin, Lu Wei, Zhang Xiaojuan, Huang Shihao. Feature Analysis and Automatic Identification of Query Specificity[J]. 现代图书情报技术, 2015, 31(2): 15-23.
[7] Chen Yong, Li Honglian, Lv Xueqiang. Analysis for the Search Behavior of Web Users[J]. 现代图书情报技术, 2014, 30(12): 10-17.
[8] Zeng Manjiang, Li Yongwen, Liu Juan, Hu Zhen. Optimization Research of Mobile Library Website for Enhancement of User Experience——A Case Study of Mobile Library Project in Sichuan Province[J]. 现代图书情报技术, 2012, 28(1): 85-91.
[9] Tian Yilin, Teng Guangqing, Dong Lili, Zhang Fan. The Correction of Anchoring Effect on Information Screening Based on Concept Lattice in Virtual Community[J]. 现代图书情报技术, 2011, 27(4): 24-28.
[10] Wang Jimin, Lilei Mingzi, Zhang Peng. Co-authorship Network Analysis in the Research Field of Search Engine’s Log Mining[J]. 现代图书情报技术, 2011, 27(4): 58-63.
[11] Zhang Hongbin, Cao Yiqin. A New Classifier Design in a Topic Search Engine by Combining Multi-layer Classifier with Naive Bayes Classification Model[J]. 现代图书情报技术, 2011, 27(3): 73-79.
[12] Zhou Zhicheng. Real-Time Search Suggestions Based on the Clustering of the User’ s Query Intent[J]. 现代图书情报技术, 2011, 27(2): 87-93.
[13] Ke Qing, Cheng Ying, Zheng Yanning, Pan Yuntao. Construction of the Usability Evaluation Indicators on Search Engine[J]. 现代图书情报技术, 2011, (11): 24-30.
[14] Jing Jing, Hong Ying, Jiang Yuanyuan, Gao Xiaofeng. Study on Web Retrieval Query Fusion Based on Relevance Feedback[J]. 现代图书情报技术, 2011, 27(1): 57-62.
[15] Guo Shaoyou. Research on Deep Web Surfacing Based on Common Search Engines[J]. 现代图书情报技术, 2010, 26(2): 24-30.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn