Please wait a minute...
New Technology of Library and Information Service  2011, Vol. Issue (11): 44-47    DOI: 10.11925/infotech.1003-3513.2011.11.07
Current Issue | Archive | Adv Search |
Research of Personalized Book Recommender System of University Library Based on Collaborative Filter
Dong Kun
Library of South-Central University for Nationalities, Wuhan 430074, China
Download: PDF(521 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the disadvantages of insufficient mining and analysis of readers' information needs existing in the active book recommendation service of university library, the paper brings forward a construction of personalized book recommender system based on collaborative filter. The system imports the factors of faculty, role, education and the readers' records of visiting the reading rooms to construct the reader's characteristic model. By mining and analyzing the characteristic model which uses optimized collaboration filter algorithm, the system can produce the personalized book recommendation to reader.And the experiment proves that the system is efficient and practical.
Key wordsCollaborative filter      Information service      Data mining      Data warehouse     
Received: 01 July 2011      Published: 06 January 2012
:  G205.7  

Cite this article:

Dong Kun. Research of Personalized Book Recommender System of University Library Based on Collaborative Filter. New Technology of Library and Information Service, 2011, (11): 44-47.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.11.07     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V/I11/44

[1] 熊拥军,陈春颖.基于关联挖掘技术的数字图书馆个性化推送服务[J]. 图书情报工作, 2010,54(1):125-129.
[2] 曹美琴.数据挖掘在图书馆个性化服务中的应用研究 .西安:西北大学,2008.
[3] Bresse J S,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering .In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco:Morgan Kaufmann,1998:43-52.
[4] Agrawal R,Imielinski T,Swami A. Mining Associations Between Sets of Items in Large Databases .In:Proceedings of the ACM SIGMOD International Conference on Management of Date. 1993:207-216.
[5] 邵伟.基于领域知识的协同过滤推荐研究 .保定:河北大学,2010.
[6] 常富洋,林鸿飞,许侃.基于用户向量扩展的协同推荐方法[J]. 情报学报, 2010,29(4):688-694.
[7] Sarwar B,Karypis G,Konstan J,et al.Item-based Collaborative Filtering Recommendation Algorithms .In:Proceedings of the 10th International World Wide Web Conference. New York:ACM Press,2001:285-295.
[8] 柯平,高洁.信息管理概论[M].北京:科学出版社,2007:205-207.
[1] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[2] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[3] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[4] Jian Li,Mingyue Wang,Luming Xu,Yingchun Tian. The Construction of Digital Medical Information Service Evaluation System Based on User Perceived Value[J]. 数据分析与知识发现, 2019, 3(2): 118-126.
[5] Jie Li,Fang Yang,Chenxi Xu. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[6] Daoping Wang,Zhongyang Jiang,Boqing Zhang. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[7] Yong Wang,Yongdong Wang,Huifang Guo,Yumin Zhou. Measuring Item Similarity Based on Increment of Diversity[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[8] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[9] Yongnan Li. Using Bayes Theory to Classify Counter Terrorism Intelligence[J]. 数据分析与知识发现, 2018, 2(10): 9-14.
[10] Dongmei Mu,Ping Wang,Danning Zhao. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[11] Fuliang Xue,Junling Liu. Improving Collaborative Filtering Recommendation Based on Trust Relationship Among Users[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[12] Zhongyi Hu,Chaoqun Wang,Jiang Wu. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[13] Xingxin Qin,Rongbo Wang,Xiaoxi Huang,Zhiqun Chen. Slope One Collaborative Filtering Algorithm Based on Multi-Weights[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[14] Siwei Jiang,Zhenping Xie,Meijie Chen,Ming Cai. Self-Explainable Reduction Method for Mixed Feature Data Modeling[J]. 数据分析与知识发现, 2017, 1(12): 92-100.
[15] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn