Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (12): 39-45    DOI: 10.11925/infotech.1003-3513.2011.12.06
Current Issue | Archive | Adv Search |
Research on Chinese Keywords Extraction Based on Characters Sequence Annotation
Wang Hao, Deng Sanhong, Su Xinning
Department of Information Management, Nanjing University, Nanjing 210093, China
Download: PDF(698 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  Based on the whole Chinese booklist of a certain university library as well as the analysis of its book indexing information, the paper summarizes the features and extracting laws of Chinese keywords, and establishes a Chinese keywords extraction model based on characters sequence annotation, which proposes the basic idea and implementation scheme for extracting keywords. It verifies the feasibility, rationality and practicality of the model by large-scale experiments, and basically solves the problems of Chinese keywords extraction without executing words segmentation, which shows that characters sequence annotation is better than words sequence annotation.
Key wordsSequence annotation      Conditional random fields      Keywords extraction      Machine learning      Characters sequence      Words sequence     
Received: 08 October 2011      Published: 02 February 2012
: 

TP391.1

 

Cite this article:

Wang Hao, Deng Sanhong, Su Xinning. Research on Chinese Keywords Extraction Based on Characters Sequence Annotation. New Technology of Library and Information Service, 2011, 27(12): 39-45.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2011.12.06     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2011/V27/I12/39

[1] Hulth A. Combining Machine Learning and Natural Language Processing for Automatic Keyword Extraction[D]. Stockholm: Stockholm University, 2004.

[2] 王昊, 严明, 苏新宁. 基于机器学习的中文书目自动分类研究[J]. 中国图书馆学报, 2010,36(6): 28-39.

[3] 章成志, 苏新宁. 基于条件随机场的自动标引模型研究[J]. 中国图书馆学报, 2008,34(5): 89-94, 99.

[4] Chu C M, O’Brien A. Subject Analysis:The Critical First Stage in Indexing[J]. Journal of Information Science, 1993, 19(6): 439-454.

[5] 邓箴, 包宏. 改进的关键词抽取方法研究[J]. 计算机工程与设计, 2009,30(20): 4677-4680, 4769.

[6] 张雪英, Krause J. 中文文本关键词自动抽取方法研究[J]. 情报学报, 2008,27(4): 512-520.

[7] 徐文海, 温有奎. 一种基于TFIDF方法的中文关键词抽取算法[J]. 情报理论与实践, 2008,31(2): 298-302.

[8] 张庆国, 薛德军, 张振海, 等. 海量数据集上基于特征组合的关键词自动抽取[J]. 情报学报, 2006,25(5): 587-593.

[9] 杨洁, 季铎, 蔡东风, 等. 基于联合权重的多文档关键词抽取技术[J]. 中文信息学报, 2008,22(6): 75-79.

[10] 王灿辉, 张敏, 马少平, 等. 基于相邻词的中文关键词自动抽取[J]. 广西师范大学学报:自然科学版, 2007,25(2): 161-164.

[11] 李素建, 王厚峰, 俞士汶,等. 关键词自动标引的最大熵模型应用研究[J]. 计算机学报, 2004,27(9): 1192-1197.

[12] Frank E, Paynter G W, Witten I H,et al. Domain-Specific Keyphrase Extraction[C]. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence,Stockholm, Sweden.Morgan Kaufmann, 1999: 668-673.

[13] 章成志. 基于集成学习的自动标引方法研究[J]. 情报学报, 2010,29(1): 3-8.

[14] Zhang K, Xu H, Tang J, et al. Keyword Extraction Using Support Vector Machine[C]. In: Proceedings of the 7th International Conference on Web-Age Information Management (WAIM2006), Hong Kong, China.2006: 85-96.

[15] 中国科学院计算技术研究所. ICTCLAS汉语分词系统简介[EB/OL]. [2011-08-13]. http://ictclas.org/ictclas_introduction.html.

[16] 黄昌宁, 赵海. 由字构词——中文分词新方法[C]. 见:中国中文信息学会二十五周年学术会议报告, 2006: 53-63.

[17] Kudo T. CRF++: Yet Another CRF Toolkit[EB/OL]. [2011-08-07]. http://crfpp.sourceforge.net/.
[1] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[3] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[4] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[5] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[6] Zhen Zhang,Jin Zeng. Extracting Keywords from User Comments: Case Study of Meituan[J]. 数据分析与知识发现, 2019, 3(3): 36-44.
[7] Zixuan Zhang,Hao Wang,Liping Zhu,Sanhong eng. Identifying Risks of HS Codes by China Customs[J]. 数据分析与知识发现, 2019, 3(1): 72-84.
[8] Lina Liu,Jiayin Qi,Zhenping Zhang,Dan Zeng. Analyzing Impacts of Brand Reputation on Online Sales Based on Massive Commodity Reviews and Brand[J]. 数据分析与知识发现, 2018, 2(9): 10-21.
[9] Longjia Jia,Bangzuo Zhang. Classifying Topics of Internet Public Opinion from College Students: Case Study of Sina Weibo[J]. 数据分析与知识发现, 2018, 2(7): 55-62.
[10] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[11] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[12] Li Wang,Lixue Zou,Xiwen Liu. Visualizing Document Correlation Based on LDA Model[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
[13] Xinyue Fan,Lei Cui. Predicting Antineoplastic Drug Targets Based on Network Properties[J]. 数据分析与知识发现, 2018, 2(12): 98-108.
[14] Yang Zhao,Xini Yuan,Yawen Chen,Liqiang Wu. Predicting Conversion Rate of APP Advertising with Machine Learning[J]. 数据分析与知识发现, 2018, 2(11): 2-9.
[15] Xin Wang,Wen’gang Feng. Review of Techniques Detecting Online Extremism and Radicalization[J]. 数据分析与知识发现, 2018, 2(10): 2-8.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn