Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (1): 63-67    DOI: 10.11925/infotech.1003-3513.2012.01.11
Current Issue | Archive | Adv Search |
Application Research of Improved Genetic Neural Network Algorithm in Sales Forecast
Tai Lijun1, Hu Rufu1, Zhao Han2, Chen Caowei1
1. School of Mechanical Engineering, Ningbo University of Technology, Ningbo 315000, China;
2. School of Mechanical and Automotive Engineering, Hefei University of Technology, Hefei 230009, China
Download: PDF(577 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  According to the insufficiency existed in traditional BP algorithm for sales forecast such as low learn rate,low convergence and falling into local optimization, etc,the improvement measures are proposed. The effectiveness and the convergence of the algorithm are improved by self-adapted learning rate, the adaptability is improved by the additive momentum, and the weight of neural network is optimized by modified genetic algorithm. The large-scale search optimum ability of modified genetic algorithm is used to implement the purpose of fast search optimum and accurate prediction. Finally, an example verifies this algorithm.
Key wordsBP algorithm      Genetic algorithm      Sales forecast     
Received: 12 October 2011      Published: 26 February 2012
: 

TP311

 

Cite this article:

Tai Lijun, Hu Rufu, Zhao Han, Chen Caowei. Application Research of Improved Genetic Neural Network Algorithm in Sales Forecast. New Technology of Library and Information Service, 2012, 28(1): 63-67.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2012.01.11     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2012/V28/I1/63

[1] 沈清,胡德文,时春. 神经网络应用技术[M]. 长沙:国防科技大学出版社, 1993.

[2] 谭永红. 基于BP神经网络的自适应控制[J]. 控制理论与应用 , 1994, 11 (1): 84-88.

[3] 王鑫,于洪亮,张琳,等. 采用改进遗传神经网络的多载荷振动信号故障诊断[J]. 噪声与振动控制 ,2011,8:137-141.

[4] 徐永春,张森文.改进遗传神经网络在甘蔗产量预测中的应用[J]. 华南农业大学学报 ,2011,7(31):102-104.

[5] 高海龙,张国立.改进遗传神经网络及其在负荷预测中的应用[J]. 华北电力大学学报 ,2009,9(36):37-40.

[6] Leung F H F, Lam H K, Ling S H, et al. Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm [J]. IEEE Transactions on Neural Networks,2003,14(1):79-88.

[7] Palmes P P, Hayasaka T, Usui S. Mutation-based Genetic Neural Network [J]. IEEE Transactions on Neural Networks,2005,16(3):587-600.

[8] 张济民.基于神经网络的预测控制在摆式客车倾摆系统的应用研究[D].成都:西南交通大学,2004.

[9] Haykin S. Neural Network-A Comprehensive Foundation[M]. 2nd Edition. Beijing:Tsinghua University Press, 2001.

[10] Widrow B, Rumelhart D E, Lehr M A. Neural Network-Application in Industry, Business and Science [J]. Communication of the ACM,1994, 37(3): 93-105.

[11] Zhao F, Hong Y, Yu D, et al. A Novel Genetic Algorithm for Partner Selection Problem in Virtual Enterprise [C]. In: Proceedings of the International Conference on Intelligent Mechatromics and Automation. 2004:477-482.

[12] 董晓慧.制造型企业群价值网及其协同管理机制研究[D].合肥:合肥工业大学,2008.
[1] Jing Yan,Qiang Bi,Jie Li,Fu Wang. Construction of Aggregation Quality Predicting Model for Digital Resource in Library ——Based on Improved Genetic Algorithm and BP Neural Network[J]. 数据分析与知识发现, 2017, 1(12): 49-62.
[2] Gao Jinsong, Cheng Ya, Liang Yanqi. Ontology Matching for Linked Data Set[J]. 现代图书情报技术, 2015, 31(6): 33-40.
[3] Lu Yonghe, Liang Minghui. Improvement of Text Feature Extraction with Genetic Algorithm[J]. 现代图书情报技术, 2014, 30(4): 48-57.
[4] Zhang Han, Han Shuang, Bai Xing, Cui Lei. Application of Genetic Algorithm to Identify Hot Topics from Medical Literature[J]. 现代图书情报技术, 2011, 27(3): 57-61.
[5] Zhao Wei,Zhang Xiuhua,Zhang Xiaoqing . Network Information Resource Validity Evaluation Study Based on BP Algorithm[J]. 现代图书情报技术, 2006, 1(7): 52-55.
[6] Hao Zhangang,Wang Zhengou . A New Clustering Algorithm Based on GA and K-medoids Algorithm[J]. 现代图书情报技术, 2006, 1(5): 44-46.
[7] Wang Youyuan,Xu Xinwei,Zhou Rigui . Research on Partners Selection of Collaborative Product Design Chain Based on Ant Algorithm[J]. 现代图书情报技术, 2006, 1(11): 81-84.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn