Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (3): 83-88    DOI: 10.11925/infotech.1003-3513.2012.03.14
Current Issue | Archive | Adv Search |
Design and Implementation of Personalized E-book Purchasing Recommendation System in University Libraries
Tang Xiaoxin1, Li Gaohu2, Tang Qiuhong3, Cao Hongbing1, Gao Song2
1. Guangxi University Library, Nanning 530004, China;
2. Beijing University of Posts and Telecommunications Assets Management Co., Ltd, Beijing 100876, China;
3. Management School, Jinan University, Guangzhou 510632, China
Download: PDF(905 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper designs and implements a personalized e-book purchasing recommendation system based on the circulation log records of OPAC system, which including three models such as readers’ purchasing recommendation, personalized e-book purchasing recommendation, and purchasing recommendation management & information pushing. The system can send the e-book bibliographic data corresponding to readers’ professional background to MyLibrary of the OPACs for readers to recommend purchasing of e-books. The system can not only be used to the purchasing recommendation of electronic books, but also to that of the traditional printed books and many other broad fields such as new book recommendation service.
Key wordsE-books      Personalized purchasing recommendation      Data mining      O-cluster     
Received: 26 December 2011      Published: 19 April 2012



Cite this article:

Tang Xiaoxin, Li Gaohu, Tang Qiuhong, Cao Hongbing, Gao Song. Design and Implementation of Personalized E-book Purchasing Recommendation System in University Libraries. New Technology of Library and Information Service, 2012, 28(3): 83-88.

URL:     OR

[1] 陈新红,郭冬梅.基于读者荐购的高校图书馆文献资源建设[J]. 中华医学图书情报杂志,2011,20(9):36-37. (Chen Xinhong,Guo Dongmei.Development of Literature Resources in Academic Libraries Based on Readers-recommended Acquisition[J].Chinese Journal of Medical Library and Information Science, 2011,20(9):36-37.)

[2] 罗毅. 高校图书馆荐购系统现状与问题研究[J]. 图书馆学研究,2010(12):46-49. (Luo Yi.A Research on the Present Situations and Problems of the Recommendation System in the University Library[J]. Research on Library Science, 2010(12):46-49.)

[3] 唐小新,李高虎.基于MELINETSⅡ嵌入式电子图书采购系统的设计与实现 [J]. 现代图书情报技术,2009(12):83-88.(Tang Xiaoxin,Li Gaohu.The Design and Implementation of Embedded E-Book Acquisition System Based on MELINETS Ⅱ[J].New Technology of Library and Information Service, 2009(12):83-88.)

[4] 武建伟,俞晓红,陈文清.基于密度的动态协同过滤图书推荐算法 [J]. 计算机应用研究,2010,27(8):3013-3015. (Wu Jianwei,Yu Xiaohong,Chen Wenqing.Density-based Dynamic Collaborative Filtering Books Recommendation Algorithm[J]. Application Research of Computers,2010,27(8):3013-3015.)

[5] Ester M, Kriegel H P, Sander J, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C].In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining(KDD-96).Portland, Oregon: AAAI Press, 1996: 226-231.

[6] 于亚飞,周爱武. 一种改进的DBSCAN密度算法[J]. 计算机技术与发展,2011,21(2):30-33,38. (Yu Yafei,Zhou Aiwu.An Improved Algorithm of DBSCAN[J].Computer Technology and Development, 2011,21(2):30-33,38.)

[7] Qian W,Gong X,Zhou A.Clustering in Very Large Databases Based on Distance and Density[J].Journal of Computer Science and Technology,2003,18(1):67-76.

[8] Clustering[EB/OL]. [2012-02-13].

[9] O-Cluster[EB/OL]. [2012-02-13],

[10] Clustering in Oracle Data Mining[EB/OL]. [2012-02-13].

[11] 李凯.自动化数据挖掘在电信业中的应用[D].北京:北京邮电大学,2008. (Li Kai.Automatically Data Mining in Telecom Business[D].BeiJing:BeiJing University of Posts and Telecommunications,2008.)
[1] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[2] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[3] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[4] Yongnan Li. Using Bayes Theory to Classify Counter Terrorism Intelligence[J]. 数据分析与知识发现, 2018, 2(10): 9-14.
[5] Dongmei Mu,Ping Wang,Danning Zhao. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[6] Zhongyi Hu,Chaoqun Wang,Jiang Wu. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[7] Siwei Jiang,Zhenping Xie,Meijie Chen,Ming Cai. Self-Explainable Reduction Method for Mixed Feature Data Modeling[J]. 数据分析与知识发现, 2017, 1(12): 92-100.
[8] Mu Dongmei,Ren Ke. Discovering Knowledge from Electronic Medical Records with Three Data Mining Algorithms[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[9] Li Feng,Li Shu’ning,Yu Jing. A Department Oriented Library Usage Data System for Graduates[J]. 现代图书情报技术, 2016, 32(5): 99-103.
[10] Zhao Jingxian. Detect of Internet Fake Public Opinion Based on Decision Tree[J]. 现代图书情报技术, 2015, 31(6): 78-84.
[11] He Jianmin, Wang Zhe. The Pedigree Method to Mine Influential Clusters of Topic Information in Social Network[J]. 现代图书情报技术, 2015, 31(5): 65-72.
[12] Huang Wenbin, Xu Shanchuan, Ma Long, Wang Jun. Analysis of Mobile User Behaviors with Telecommunication Data[J]. 现代图书情报技术, 2015, 31(5): 80-87.
[13] Hao Mei, Wang Daoping. Mining Customer Focus Features from Product Reviews Oriented Supply Chain[J]. 现代图书情报技术, 2014, 30(4): 65-70.
[14] Sun Hongfei, Hou Wei. Application of Improved TFIDF Algorithm in Mining Potential Cooperation Relationship[J]. 现代图书情报技术, 2014, 30(10): 84-92.
[15] Li Gaohu, Gao Song, Tang Xiaoxin, Cao Hongbing, Tang Qiuhong. Design and Implementation of New Books Noting Personalized Recommendation System Based on Circulation Logs[J]. 现代图书情报技术, 2012, 28(6): 89-93.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938