Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (4): 61-67    DOI: 10.11925/infotech.1003-3513.2012.04.10
Current Issue | Archive | Adv Search |
Topic Evolution in Scientific Literature
He Liang, Li Fang
Department of Computer Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Download: PDF(1365 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper uses LDA model to generate topics from the scientific literature,then calculates the strength and feature key to find the evolution trends of topics. The experiments on NIPS anthology and ACL anthology show the trends of machine learning and computational linguistics, and also prove the feasibility of the proposed calculating method.
Key wordsTopic model      Trend analysis      Topic evolution     
Received: 30 January 2012      Published: 20 May 2012



Cite this article:

He Liang, Li Fang. Topic Evolution in Scientific Literature. New Technology of Library and Information Service, 2012, 28(4): 61-67.

URL:     OR

[1] Blei D M, Ng A Y,Jordan M I. Latent Dirichlet Allocation[J]. The Journal of Machine Learning Research, 2003, 3:993-1022.

[2] Blei D M, Lafferty J D. A Correlated Topic Model of Science[J]. The Annals of Applied Statistics, 2007,1(1): 17-35.

[3] Blei D M,Lafferty J D. Dynamic Topic Models[C]. In: Proceedings of the 23rd International Conference on Machine Learning. 2006: 113-120.

[4] Rosen-Zvi M, Grifiths T, Steyvers M,et al. The Author-Topic Model for Authors and Documents[C]. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. 2004.

[5] Tang J, Zhang J, Yao L M,et al. ArnetMiner: Extraction and Mining of Academic Social Networks[C].In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD).2008:990-998.

[6] Daud A, Li J Z, Zhou L Z, et al. Exploiting Temporal Authors Interests via Temporal-Author-Topic Modeling[C].In:Proceedings of the 5th International Conference on Advanced Data Mining and Applications.Berlin,Heidelberg:Springer-Verlag,2009:435-443.

[7] He Q, Chen B,Pei J,et al. Detecting Topic Evolution in Scientific Literature: How Can Citations Help[C]. In:Proceedings of the 18th ACM Conference on Information and Knowledge Management. 2009:957-966.

[8] Jo Y, Lagoze C, Giles C L. Detecting Research Topics via the Correlation Between Graphs and Texts[C]. In:Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2007:370-379.

[9] Wang X R,McCallum A. Topic Over Time: A Non-Markov Continuous-Time Model of Topical Trends[C]. In:Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2006.

[10] Griffiths T L,Steyvers M. Finding Scientific Topics[J]. Proceeding of the National Academy of Science,2004,101(S1):5228-5235.

[11] Hall D, Jurafsky D, Manning C D. Studying the History of Ideas Using Topic Models[C]. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing.2008:363-371.

[12] Ramage D, Rosen E, Chuang J, et al.Topic Modeling for the Social Sciences[C]. In: Proceedings of NIPS 2009 Workshop on Applications for Topic Models: Text and Beyond,Whistler, Canada. 2009.

[13] 楚克明,李芳. 基于LDA话题关联的话题演化[J]. 上海交通大学学报 ,2010,44(11): 1501-1506. (Chu Keming, Li Fang. Topic Evolution Based on LDA and Topic Association[J]. Journal of Shanghai Jiaotong University,2010,44(11): 1501-1506.)

[14] 贺亮,李芳. 基于话题模型的科技文献话题发现和趋势分析[C]. 见: 全国第十一届计算语言学学术会议(CNCCL-2011)论文集 .2011. (He Liang, Li Fang. Topic Discovery and Trend Analysis in Scientific Literature Based on Topic Model[C].In: Proceedings of the 11th Chinese National Conference on Computational Linguistics.2011.)

[15] Advances in Neural Information Processing Systems [DB/OL]. [2011-11-09].

[16] ACL Anthology[DB/OL].[2011-11-09].

[17] GibbsLDA + +: A C/C + + Implementation of Latent Dirichlet Allocation[EB/OL]. [2011-11-09].
[1] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[3] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[4] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[5] Hongqinling Wang,Zhichao Ba,Gang Li. Conversational Topic Intensity Calculation and Evolution Analysis of WeChat Group[J]. 数据分析与知识发现, 2019, 3(2): 33-42.
[6] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[7] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[8] Yuemei Xu,Sining Lv,Lianqiao Cai,Xiaoya Zhang. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
[9] Tao Zhang,Haiqun Ma. Clustering Policy Texts Based on LDA Topic Model[J]. 数据分析与知识发现, 2018, 2(9): 59-65.
[10] Yan Yu,Naixuan Zhao. Weighted Topic Model for Patent Text Analysis[J]. 数据分析与知识发现, 2018, 2(4): 81-89.
[11] Jingqi Wang,Rui Li,Huayi Wu. The Evolution of Online Public Opinion Based on Spatial Autocorrelation[J]. 数据分析与知识发现, 2018, 2(2): 64-73.
[12] He Li,Linlin Zhu,Min Yan,Jincheng Liu,Chuang Hong. Identifying Useful Information from Open Innovation Community[J]. 数据分析与知识发现, 2018, 2(12): 12-22.
[13] Weilin He,Guohe Feng,Hongling Xie. Analyzing Scientific Literature with Content Similarity - Topics over Time Model[J]. 数据分析与知识发现, 2018, 2(11): 64-72.
[14] Tingting Wang,Yu Wang,Linjie Qin. Dividing Time Windows of Dynamic Topic Model[J]. 数据分析与知识发现, 2018, 2(10): 54-64.
[15] Tingting Wang,Man Han,Yu Wang. Optimizing LDA Model with Various Topic Numbers: Case Study of Scientific Literature[J]. 数据分析与知识发现, 2018, 2(1): 29-40.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938