Please wait a minute...
New Technology of Library and Information Service  2012, Vol. 28 Issue (7): 109-114    DOI: 10.11925/infotech.1003-3513.2012.07.17
Current Issue | Archive | Adv Search |
An Approach to Discovery of Reference Control Gene for qRT-PCR Experiment Based on Texting Mining
He Lin, He Juan, Shen Gengyu, Yang Bo, Huang Shuiqing
Department of Information Management, Nanjing Agricultural University, Nanjing 210095, China
Download: PDF(578 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper presents a method for identifying candidate reference control gene based on text mining from PubMed database. It integrates several approaches such as pattern matching, subject recognition and information extraction to find candidate gene and its experiment environment for biology domain specialists. Experiment results show that the method not only has good performance on mining of candidate reference control gene and its environments, but also saves much time and reduces cost.
Key wordsqRT-PCR      Reference control gene      Experiment environment      Text mining      Information extraction     
Received: 28 May 2012      Published: 11 October 2012



Cite this article:

He Lin, He Juan, Shen Gengyu, Yang Bo, Huang Shuiqing. An Approach to Discovery of Reference Control Gene for qRT-PCR Experiment Based on Texting Mining. New Technology of Library and Information Service, 2012, 28(7): 109-114.

URL:     OR

[1] Czechowski T, Stitt M, Altmann T, et al. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis[J]. Plant Physiology, 2005, 139(1):5-17.

[2] Libault M, Thibivilliers S, Bilgin D D, et al. Identification of Four Soybean Reference Genes for Gene Expression Normalization [J]. The Plant Genome, 2008, 1(1):44-54.

[3] 胡瑞波,范成明,傅永福. 植物实时荧光定量PCR内参的选择[J]. 中国农业科技导报 , 2009, 11(6):30-36. (Hu Ruibo, Fan Chengming, Fu Yongfu. Reference Gene Selection in Plant Real-time Quantitative Reverse Transcription PCR(qRT-PCR)[J]. Journal of Agricultural Science and Technology, 2009, 11(6):30-36.)

[4] Faccioli P, Ciceri G P, Provero P, et al. A Combined Strategy of “in Silico” Transcriptome Analysis and Web Search Engine Optimization Allows an Agile Identification of Reference Genes Suitable for Normalization in Gene Expression Studies[J]. Plant Molecular Biology, 2007, 63(5):679-688.

[5] Coker J S, Davis E. Selection of Candidate Housekeeping Controls in Tomato Plants Using EST Data[J]. BioTechniques, 2003, 35(4):740-748.

[6] 丁效,宋凡,秦兵,等. 音乐领域典型事件抽取方法研究[J]. 中文信息学报 , 2011, 25(2):15-20. (Ding Xiao, Song Fan, Qin Bing, et al. Research on Typical Event Extraction Method in the Field of Music[J]. Journal of Chinese Information Processing, 2011, 25(2):15-20.)

[7] 许旭阳,李弼程,张先飞,等. 基于事件实例驱动的新闻文本事件抽取[J]. 计算机科学 , 2011,38(8):232-235. (Xu Xuyang, Li Bicheng, Zhang Xianfei, et al. News Text Event Extraction Driven by Event Sample[J]. Computer Science, 2011, 38(8):232-235.)

[8] 郑家恒, 菅小艳. 农作物信息抽取系统的设计与实现[J]. 计算机工程 , 2006, 32(7):197-198. (Zheng Jiaheng, Jian Xiaoyan. Design and Realization of the System of Farm Crop Information Extraction[J]. Computer Engineering, 2006, 32(7):197-198.)

[9] 高文利. 基于本体的军备情报抽取系统的设计与实现[J]. 现代图书情报技术 , 2010(1):83-87. (Gao Wenli. The System of Arms Information Extraction Based on Ontology[J]. New Technology of Library and Information Service, 2010(1):83-87.)

[10] The Stanford Parser: A Statistical Parser[EB/OL].[2011-12-18].

[11] Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium [J]. Nature Genetics, 2000, 25(1):25-29.

[12] Morris J, Hirst G. Lexical Cohesion Computed by Thesaural Relations as an Indicator of the Structure of Text [J]. Computational Linguistics, 1991, 17 (1):21-48.

[13] Jain M, Nijhawan A, Tyagi A K, et al. Validation of Housekeeping Genes as Internal Control for Studying Gene Expression in Rice by Quantitative Real-time PCR[J]. Biochemical and Biophysical Research Communications, 2006,345(2):646-651.
[1] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[2] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[3] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[4] Dongmei Mu,Shan Jin,Yuanhong Ju. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[5] Ning Zhang,Lemin Yin,Lifeng He. Impacts of “Poster-Follower” Sentiment on Stock Market Performance[J]. 数据分析与知识发现, 2018, 2(6): 1-12.
[6] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[7] Qiangbing Wang,Chengzhi Zhang. Constructing Users Profiles with Content and Gesture Behaviors[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[8] Xiufang Xie,Xiaolin Zhang. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[9] Yao Zhaoxu,Ma Jing. Extracting Topic and Opinion from Microblog Posts with New Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
[10] Lan Qiujun,Liu Wenxing,Li Weikang,Hu Xingye. Sentiment Analysis of Financial Forum Textual Message[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[11] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[12] Lin Yuanyuan,Zhan Hongfei,Yu Junhe,Li Changjiang,Zhang Fan. Using Product Reviews to Analyze Sentiment Fluctuation of Consumer[J]. 现代图书情报技术, 2016, 32(11): 44-53.
[13] Zhao Dongxiao,Wang Xiaoyue,Bai Rujiang,Liu Ziqiang. Semantic Text Mining Methodologies for Intelligence Analysis[J]. 现代图书情报技术, 2016, 32(10): 13-24.
[14] Sui Mingshuang,Cui Lei. Extracting Chemical and Disease Named Entities with Multiple-Feature CRF Model[J]. 现代图书情报技术, 2016, 32(10): 91-97.
[15] Ruyi Yang,Dongsu Liu,Hui Li. An Improved Topic Model Integrating Extra-Features[J]. 现代图书情报技术, 2016, 32(1): 48-54.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938