Please wait a minute...
New Technology of Library and Information Service  2012, Vol. Issue (9): 49-55    DOI: 10.11925/infotech.1003-3513.2012.09.09
Current Issue | Archive | Adv Search |
Research on Enterprise Competitiveness Factor Analysis Combining Semantic Clustering
Zhang Yufeng, He Chao, Wang Zhifang, Zhou Lei
Center for Studies of Information Resources of Wuhan University, Wuhan 430072, China
Download: PDF(679 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper integrates clustering into the exploration and discovery of enterprise competitiveness factors,then proposes a semantic-based comprehensive hierarchical clustering analysis method according to the software enterprise domain Ontology constructed by the research team. This method fuses Ontology and clustering technologies, brings forth new ideas for the clustering analysis method based on domain Ontology,that is Onto-kmeans, and achieves the analysis and acquisition of enterprise competitiveness factors at semantic level. The experimental results indicate that this method can significantly improve the accuracy and efficiency of clustering analysis,effectively mine and obtain global factors influencing the competitiveness of software enterprise, identify and verify the major factors.
Key wordsSemantic clustering      Factor analysis      Enterprise competitiveness     
Received: 19 June 2012      Published: 25 December 2012
: 

G350

 

Cite this article:

Zhang Yufeng, He Chao, Wang Zhifang, Zhou Lei. Research on Enterprise Competitiveness Factor Analysis Combining Semantic Clustering. New Technology of Library and Information Service, 2012, (9): 49-55.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2012.09.09     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2012/V/I9/49

[1] Hotho A, Staab S, Stumme G. WordNet Improves Text Document Clustering [C]. In: Proceedings of the Semantic Web Workshop of the 26th Annual International ACM SIGIR Conference on Research and Development in Informatioin Retrieval, Toronto, Canada. 2003.
[2] Sedding J, Kazakov D. WordNet-based Text Document Clustering [C]. In: Proceedings of the 3rd Workshop on Robust Methods in Analysis of Natural Language Data(ROMAND’04). Stroudsburg: Association for Computational Linguistics, 2004: 104-113.
[3] Hu X H, Zhang X D, Lu C M, et al. Exploiting Wikipedia as External Knowledge for Document Clustering [C]. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD’09). New York: ACM, 2009:389-396.
[4] Gad W K, Kamel M S. Enhancing Text Clustering Performance Using Semantic Similarity [C]. In: Proceedings of International Conference on Enterprise Information Systems. Berlin: Springer, 2009: 325-335.
[5] Zhu S, Zeng J, Mamitsuka H. Enhancing MEDLINE Document Clustering by Incorporating MeSH Semantic Similarity [J]. Bioinformatics, 2009, 25(15):1944-1951.
[6] Hotho A, Maedche A, Staab S. Text Clustering Based on Good Aggregation[J].Kunstliche Intelligen, 2002, 16(4):48-54.
[7] Kong H, Hwang M, Hwang G, et al. Topic Selection of Web Documents Using Specific Domain Ontology [C]. In: Proceedings of the 5th Mexican International Conference on Artificial Intelligence(MICAI’06). Heidelberg,Berlin: Springer-Verlag, 2006: 1047-1056.
[8] 朱恒民, 马静, 黄卫东.基于领域本体的SOM文本逐层聚类方法[J]. 情报学报, 2008, 27(6): 845-850. (Zhu Hengmin, Ma Jing, Huang Weidong. Layer-by-Layer SOM Text Clustering Method Based on Domain Ontology[J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(6): 845-850.)
[9] Yoo I, Hu X H. Biomedical Ontology MeSH Improves Document Clustering Qualify on MEDLINE Articles: A Comparison Study [C]. In: Proceedings of the 19th IEEE Symposium on Computer-based Medical Systems(CBMS’06). Washington, DC: IEEE Computer Society, 2006: 577-582.
[10] Dong J, Wang S P, Xiong F L. A Method for Domain Conception Clustering with the Guidance of Domain Ontology [C]. In: Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation(ICICTA’10). Washington, DC: IEEE Computer Society, 2010: 151-155.
[11] 元昌安.数据挖掘原理与SPSS Clementine应用宝典[M].北京:电子工业出版社,2009.(Yuan Chang’an. Data Mining and SPSS Clementine Application [M]. Beijing: Publishing House of Electronics Industry, 2009.)
[12] Hartigan J A, Wong M A. Algorithm AS 136: A K-means Clustering Algorithm [J]. Journal of the Royal Statistical Society-Series C (Applied Statistics), 1979, 28(1): 100-108.
[13] Kanungo T, Mount D M, Netanyahu N S, et al. An Efficient K-means Clustering Algorithm: Analysis and Implementation [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2002, 24(7): 881-892.
[14] 张玉峰,何超.基于领域本体的语义文本挖掘研究[J]. 情报学报,2011,30(8):832-839.(Zhang Yufeng, He Chao. Research on Semantic Text Mining Based on Domain Ontology [J]. Journal of the China Society for Scientific and Technical Information, 2011,30(8):832-839.)
[15] Wu Z B, Palmer M. Verb Semantics and Lexical Selection [C].In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics(ACL’94). Stroudsburg: Association for Computational Linguistics, 1994:133-138.
[16] Basili R, Cammisa M, Moschitti A. A Semantic Kernel to Classify Texts with Very Few Training Examples [C]. In: Proceedings of the Workshop on Learning in Web Search, at the 22nd International Conference on Machine Learning(ICML 2005). New York: ACM, 2005:163-172.
[1] Xueying Wang,Zixuan Zhang,Hao Wang,Sanhong Deng. Evaluating Brands of Agriculture Products: A Literature Review[J]. 数据分析与知识发现, 2017, 1(7): 13-21.
[2] Yang Yang,Lin Hui,Hu Guangwei. Detecting Investment Risks of Photovoltaic Projects with Big Data: Case Study of Solarbao.com[J]. 现代图书情报技术, 2016, 32(11): 11-19.
[3] Li Beiwei, Xu Yue, Shan Jimin, Wei Changlong, Zhang Xinqi, Fu Jinxin. Study on Network Information Ecological Chain of Chinese Shopping Websites[J]. 现代图书情报技术, 2013, 29(9): 67-73.
[4] Zhang Yufeng, He Chao, Wang Zhifang, Zhou Lei. Research on Enterprise Competitiveness Factor Analysis Combining Semantic Classification[J]. 现代图书情报技术, 2012, (9): 56-61.
[5] Gan Liren,Xu Yingnan. An Investigation on Factors Affecting the User's Acceptance Behavior of Enterprise Information System——An Example of ERP System[J]. 现代图书情报技术, 2009, 3(2): 71-77.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn