Please wait a minute...
New Technology of Library and Information Service  2012, Vol. Issue (10): 28-34    DOI: 10.11925/infotech.1003-3513.2012.10.05
article Current Issue | Archive | Adv Search |
Review on Mining Methods of Correlated Bursty Topic Patterns
Huang Yongwen
National Science Library, Chinese Academy of Sciences, Beijing 100190, China
Download: PDF(658 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper introduces the definition of correlated bursty topic patterns and studies the key issues of mining correlated bursty topic patterns such as detect bursty topics, locate bursty period of a bursty topic and discover correlated bursty topics.Finally, it analyzes the methods of mining correlated bursty topics from text collections, synchronous text streams and asynchronous text streams.
Key wordsCorrelated bursty topic      Bursty detection      Mining topic patterns     
Received: 25 September 2012      Published: 24 January 2013



Cite this article:

Huang Yongwen. Review on Mining Methods of Correlated Bursty Topic Patterns. New Technology of Library and Information Service, 2012, (10): 28-34.

URL:     OR

[1] Klan D, Karnstedt M, Pölitz C, et al. Towards Burst Detection for Non-Stationary Stream Data[EB/OL].[2012-06-25].
[2] Kleinberg J. Bursty and Hierarchical Structure in Streams[J].Data Mining and Knowledge Discovery,2003,7(4): 373-397.
[3] Wang X H, Zhai C X, Hu X,et al. Mining Correlated Bursty Topic Patterns from Coordinated Text Streams[C].In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA. New York:ACM,2007:784-793.
[4] Yi J. Detecting Buzz from Time-Sequenced Document Streams[C].In: Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service.Washington:IEEE Computer Society,2005: 347-352.
[5] Fujiki T, Nanno T, Suzuki Y, et al. Identification of Bursts in a Document Stream[J].Joho Shori Gakkai Kenkyu Hokoku,2004(23):85-92.
[6] Sunehag P. Using Two-Stage Conditional Word Frequency Models to Model Word Burstiness and Motivating TF-IDF[C].In:Proceedings of the 11th International Conference for Artificial Intelligence and Statistic.New Jersey:The Society for AI and Statistics,2007:8-16.
[7] Kotov A, Zhai C X, Sproat R. Mining Named Entities with Temporally Correlated Bursts from Multilingual Web News Streams[C]. In: Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, China. New York:ACM,2011:237-246.
[8] 钱哲怡,李芳.基于关键词和命名实体识别的新闻话题线索抽取[J]. 计算机应用与软件,2011,28(12):168-171.(Qian Zheyi, Li Fang.Keyword and Name Entity Identification Based News Topic Thread Extraction[J].Computer Applications and Software,2011,28(12):168-171.)
[9] Zhu Y Y,Shasha D. Efficient Elastic Burst Detection in Data Streams[C].In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA.New York:ACM,2003:336-345.
[10] Yuan Z J,Jia Y,Yang S Q. Online Burst Detection over High Speed Short Text Streams[C].In: Proceedings of the 7th International Conference on Computational Science,Beijing,China. Berlin,Heidelberg:Springer-Verlag,2007:717-725.
[11] Krause A, Leskovec J, Guestrin C. Data Association for Topic Intensity Tracking[C].In: Proceedings of the 23rd International Conference on Machine Learning. New York:ACM,2006:497-504.
[12] He Q, Chang K Y,Lim E P. Using Burstiness to Improve Clustering of Topics in News Streams[C]. In:Proceedings of the 7th IEEE International Conference on Data Mining. Washington:IEEE Computer Society,2007: 493-498.
[13] Wang X R, McCallum A. Topics Over Time:A Non-Markov Continuous-Time Model of Topical Trends[C]. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM, 2006:424-433.
[14] Li W,Wang X R,McCallum A.A Continuous-Time Model of Topic Co-Occurrence Trends[C].In: Proceedings of the 21st National Conference on Artificial Intelligence Workshop on Event Extraciton and Systhesis,2006:48-53.
[15] Ren L,Dunson D B, Carin L. The Dynamic Hierarchical Dirichlet Process[C].In: Proceedings of the 25th International Conference on Machine Learning.New York:ACM,2008:824-831.
[16] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research,2003,3:993-1022.
[17] Blei D M, Lafferty J D.A Correlated Topic Model of Science[J].The Annals of Applied Statistics,2007,1(1):17-35.
[18] Li W, McCallum A. Pachinko Allocation:Dag-Structured Mixture Models of Topic Correlations[C].In: Proceedings of the 23rd International Conference on Machine Learning.New York:ACM,2006:577-584.
[19] Li W, Blei D, McCallum A. Nonparametric Bayes Pachinko Allocation[EB/OL].[2012-06-25].
[20] Kim D I, Sudderth E B. The Doubly Correlated Nonparametric Topic Model[EB/OL].[2012-06-25].
[21] Wang C, Blei D,Heckerman D. Continuous Time Dynamic Topic Models[C]. In: Proceedings of Uncertainty in Artificial Intelligence.Corvallis: AUAI Press,2008: 579-586.
[22] Blei D M, Lafferty J D. Dynamic Topic Models[C].In: Proceedings of the 23rd International Conference on Machine Learning.New York:ACM, 2006:113-120.
[23] Ni X C,Sun J T,Hu J, et al. Mining Multilingual Topics from Wikipedia[C].In: Proceedings of the 18th International Conference on World Wide Web.New York:ACM,2009: 1155-1156.
[24] Zhao W X,Jiang J,He J,et al. Context Modeling for Ranking and Tagging Bursty Features in Text Streams[C].In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management.New York:ACM,2010:1769-1772.
[25] Yao J J,Cui B, Huang Y X,et al. Temporal and Social Context Based Burst Detection from Folksonomies[C].In:Proceedings of the 24th AAAI Conference on Artificial Intelligence.California, USA:AAAI,2010:1474-1479.
[26] Morita K, Atlam E S,Fuketra M,et al. Word Classification and Hierarchy Using Co-Occurrence Word Information[J].Information Processing and Management,2004,40(6):957-972.
[27] Sun A, Zeng D D, Chen H.Burst Detection from Multiple Data Streams: A Network-Based Approach[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2010,40(3):258-267.
[28] Wang X, Zhang K, Jin X M, et al. Mining Common Topics from Multiple Asynchronous Text Streams[C]. In: Proceedings of the 2nd ACM International Conference on Web Search and Data Mining.New York:ACM,2009: 192-201.
[1] Gao Li, Zhou Jinhui, Liu Yajing. Analysis of Data Characteristics in 3O Convergence Websites[J]. 现代图书情报技术, 2013, 29(7/8): 1-12.
[2] Xu Zhuobin, Lin Junwei. Study on Planning of Library Data Center Virtualization Network[J]. 现代图书情报技术, 2013, 29(7/8): 137-142.
[3] Zhu Yuqiang. Programming Assisted Tools for Library’s Microblog[J]. 现代图书情报技术, 2013, (5): 92-92.
[4] Wang Weijun, Jiang Yi, Liu Rui, Kari Smolander. Research Progress in Software Testing on Cloud Computing[J]. 现代图书情报技术, 2012, (11): 3-9.
[5] Le Xiaoqiu, Hong Na. A Survey of Burst Topic Detection Towards Social Text Stream Data[J]. 现代图书情报技术, 2012, (10): 21-27.
[6] Wang Jimin, Lilei Mingzi, Wang Mingxing. Knowledge Mapping Analysis of Mobile Search[J]. 现代图书情报技术, 2012, (9): 29-35.
[7] Wang Dandan, Ma Wenhu, Liu Youhua. Research on the Dynamic Construction Method of SNS Network Learning Community Based on Interest[J]. 现代图书情报技术, 2012, (9): 42-48.
[8] Liu Qian, Hu Chaoming. Open Source Solution for Library Private Cloud Infrastructure[J]. 现代图书情报技术, 2012, 28(7): 48-53.
[9] Ye Jian, Li Dan, Yan Xiaodi, Li Juan, Wei Qingshan, Han Meng, Xiao Xiaobo. Research and Implementation of Library WLAN Unified Authentication System[J]. 现代图书情报技术, 2012, 28(7): 121-126.
[10] Yu Yan, Qiu Guanghua. Research on Collaborative Filtering Recommendation Algorithm by Fusing Social Network[J]. 现代图书情报技术, 2012, 28(6): 54-59.
[11] Geng Shengnan, Liu Chuanyi, Wu Xu. Research and Implementation of Cloud Computing Platform Oriented Online Storage System[J]. 现代图书情报技术, 2012, 28(6): 72-77.
[12] Shen Hongzhou, Zong Qianjin, Yuan Qinjian. Implementation of Commerce Information Push Service Using Google C2DM[J]. 现代图书情报技术, 2012, 28(6): 78-83.
[13] Xia Cuijuan, Zhang Yan. The New Chance of Library Mobile Reading Services: HTML5 & CSS3[J]. 现代图书情报技术, 2012, 28(5): 16-25.
[14] Yu Yan, Qiu Guanghua. Research on User Interest Shift Aware Random Walk with Restart Recommendation Algorithm[J]. 现代图书情报技术, 2012, 28(4): 48-53.
[15] Feng Jiangfan, Wang Qian, Liu Zhaohong. Research and Implement of Library Positioning System in Wireless LAN Environment[J]. 现代图书情报技术, 2012, 28(4): 79-83.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938