Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (2): 36-42    DOI: 10.11925/infotech.1003-3513.2013.02.06
Current Issue | Archive | Adv Search |
An Ontology Mapping Method Based on Lexical Similarity Calculation
Xu Jian1, Fang An2, Hong Na2
1. School of Information Management, Sun Yat-Sen University, Guangzhou 510006, China;
2. Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing 100020, China
Download: PDF(616 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  Ontology mapping is one of the solutions to Ontology heterogeneity problem. To solve problems that still exist in current concept similarity calculation algorithms, the paper puts forward an improved method,which introduces the synonym/homonym search and edit distance algorithm into the process of term head words similarity calculation. The new automatic weight assign method is also used to integrate the similarity values of head words and modify words. Compared to the other classic Ontology mapping method of the same type, it is proved the improved method has better effects.
Key wordsOntology mapping      Lexical similarity      Concept similarity      
Received: 25 December 2012      Published: 24 April 2013
:  G250  

Cite this article:

Xu Jian, Fang An, Hong Na. An Ontology Mapping Method Based on Lexical Similarity Calculation. New Technology of Library and Information Service, 2013, 29(2): 36-42.

URL:     OR

[1] Fellbaum C. WordNet: An Electronic Lexical Database[M]. Cambridge: MIT Press, 1998: 292-296.
[2] Rodríguez M A, Egenhofer M J. Determining Semantic Similarity Among Entity Classes from Different Ontologies[J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(2):442-456.
[3] Sunna W, Cruz I F. Structure-based Methods to Enhance Geospatial Ontology Alignment[C]. In:Proceedings of the 2nd International Conference on GeoSpatial Semantics(GeoS'07). Berlin, Heidelberg:Springer-Verlag,2007:82-97.
[4] Doan A, Madhavan J, Domingos P, et al. Ontology Matching: A Machine Learning Approach[OL]. Handbook on Ontologies in Information Systems, 2004, LNCS 4853: 397-416. [2012-12-02].
[5] Shailendra S, Cheah Y. Hybrid Approach Towards Ontology Mapping[C]. In: Proceedings of 2010 International Symposium in the Information Technology (ITSim). Berlin: Springer-Verlag, 2010: 1490-1493.
[6] 高炜, 梁立. 一种改进的基于相似度的本体映射方法[J]. 甘肃联合大学学报:自然科学版, 2009, 23(5): 59-63. (Gao Wei, Liang Li. Improved Ontology Mapping Method Based on Semantic Similarity[J]. Journal of Gansu Lianhe University:Natural Sciences Edition, 2009, 23(5): 59-63.)
[7] 李佳, 祝铭, 刘辰, 等. 中文本体映射研究与实现[J]. 中文信息学报, 2007, 21(4):27-33.(Li Jia, Zhu Ming, Liu Chen, et al. Research and Implementation on Chinese Ontology Mapping[J]. Journal of Chinese Information Processing, 2007, 21(4):27-33.)
[8] Cosine Similarity[EB/OL]. [2012-12-02].
[9] Smith T F, Waterman M S. Identification of Common Molecular Subsequences[J]. Journal of Molecular Biology, 1981,147(1): 195-197.
[10] Winkler W E. String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage[C]. In: Proceedings of the Section on Survey Research Methods. 1999: 354-359.
[11] Jaro M A. Advances in Record Linkage Methodology as Applied to the 1985 Census of Tampa Florida[J]. Journal of the American Statistical Society, 1989, 84(406):414-420.
[12] Nenadic G, Spasic I, Ananiadou S. Automatic Discovery of Term Similarities Using Pattern Mining[C]. In:Proceedings of the 2nd International Workshop on Computational Terminology. Stroudsburg, PA, USA:Association for Computational Linguistics, 2002: 1-7.
[13] Noessner J, Niepert M. CODI: Combinatorial Optimization for Data Integration–Results for OAEI 2010[C]. In:Proceedings of the 5th International Workshop on Ontology Matching (OM-2010), Shanghai, China. 2010: 142-149.
[14] Huber J, Sztyler T, Noessner J, et al. CODI: Combinatorial Optimization for Data Integration–Results for OAEI 2011[C]. In: Proceedings of the ISWC Workshop on Ontology Matching. 2011: 134-141.
[15] Agirre E, Rigau G. A Proposal for Word Sense Disambiguation Using Conceptual Distance[J]. Amsterdam Studies in the Theory and History of Linguistic Science Series, 1997(4): 161-172.
[16] Resnik P. Using Information Content to Evaluate Semantic Similarity in a Taxonomy[C]. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence(IJCAI-95).1995: 448-453.
[17] 陈骏. 一种新的本体映射方法[J]. 情报杂志, 2009, 28(8): 183-186. (Chen Jun. A New Approach in Ontology Mapping[J]. Journal of Intelligence, 2009, 28(8): 183-186.)
[18] The Porter Stemming Algorithm[EB/OL]. [2012-12-02].
[19] Jaro Winkler Distance[EB/OL]. [2012-12-02].
[20] 刘莎. 名词短语中修饰语排序的认知原因[J]. 科教文汇, 2007(10): 198-199. (Liu Sha. The Cognitive Reason of Modifier Words Order in Noun Phrases[J]. The Science Education Article Collects, 2007(10): 198-199.)
[21] Stanford Parser[EB/OL]. [2012-12-02].
[22] Meilicke C, vb -Zamazal O, Trojahn C, et al. Evaluating Ontology Matching Systems on Large,Multilingual and Real-world Test Cases [OL]. [2012-12-02].
[23] 徐德智, 肖文芳, 王怀民. 本体映射过程中的概念相似度计算[J]. 计算机工程与应用, 2007, 43(9): 167-169. (Xu Dezhi, Xiao Wenfang, Wang Huaimin. Concept Similarity Calculating During the Process of Ontology Mapping[J]. Computer Engineering and Applications, 2007, 43(9): 167-169.)
[24] Anatomy-Results of 2010 Evaluation[EB/OL]. [2012-12-02].
[1] Wang Liwei, Mu Dongmei, Wang Wei. NCBO-based Ontology Mapping and Application[J]. 现代图书情报技术, 2013, 29(10): 15-19.
[2] Lu Shengjun,Li Fayong,Qian Jianjun ,Zhen Zhen. WCONS+:An Ontology Integration Approach Based on WCONS[J]. 现代图书情报技术, 2009, 3(2): 18-22.
[3] Lu Shengjun,Zhen Zhen. Study on Fundamental Theoretical Framework of Ontology Matching[J]. 现代图书情报技术, 2007, 2(11): 28-32.
[4] Song Qi,Xue Jianwu . Study of the Ontology Mapping Method Based on the User Model in the Intelligent Retrieval System[J]. 现代图书情报技术, 2006, 1(9): 29-33.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938