Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (3): 27-32    DOI: 10.11925/infotech.1003-3513.2013.03.05
Current Issue | Archive | Adv Search |
Research on Business Intelligence Link Analysis Algorithm Combining Semantic Similarity
He Chao, Zhang Yufeng
School of Information Management, Wuhan University, Wuhan 430072, China
Download: PDF(667 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  A business intelligence link analysis algorithm based on semantic similarity is designed for the problem of link lost and semantic heterogeneity in the traditional link analysis algorithm. The algorithm exploits anchor chain text and structure synthetically to solve link lost, uses semantic knowledge presented by domain Ontology to solve semantic heterogeneity. The experiment results show that the model and the algorithm achieve a good expected effect and can raise the accuracy and efficiency of business intelligence analysis.
Key wordsBusiness intelligence      Semantic similarity      Link analysis     
Received: 31 January 2013      Published: 14 May 2013
:  G350  

Cite this article:

He Chao, Zhang Yufeng. Research on Business Intelligence Link Analysis Algorithm Combining Semantic Similarity. New Technology of Library and Information Service, 2013, 29(3): 27-32.

URL:     OR

[1] Getoor L. Link Mining: A New Data Mining Challenge[J]. ACM SIGKDD Explorations Newsletter, 2003, 5(1): 84-89.
[2] Zhang X, Zhao C F, Wang P, et al. Mining Link Patterns in Linked Data[C]. In: Proceedings of WAIM. 2012: 83-94.
[3] Thelwall M. 链接分析:信息科学的研究方法[M].孙建军,李江,张煦译.南京:东南大学出版社,2009:3-7.(Thelwall M. Link Analysis: An Information Science Approach[M].Translated by Sun Jianjun, Li Jiang, Zhang Xu. Nanjing: Southeast University Press, 2009: 3-7.)
[4] Kleinberg J M. Authoritative Sources in a Hyperlinked Environment [C]. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms(SODA ’98). 1998: 668-677.
[5] Brin S, Page L. The Anatomy of a Large-scale Hypertextual Web Search Engine[J]. Computer Networks and ISDN Systems, 1998, 30(1): 107-117.
[6] Stattner E, Collard M. MAX-FLMin: An Approach for Mining Maximal Frequent Links and Generating Semantical Structures from Social Networks[C]. In: Proceedings of the 23rd International Conference on DEXA, Vienna, Austria. 2012: 468-483.
[7] 马丽.融入语义相似度的HITS算法研究及实现[D].南京:南京理工大学, 2011.(Ma Li. Research and Realization of HITS Algorithm Integrating Semantic Similarity[D]. Nanjing: Nanjing University of Science and Technology, 2011.)
[8] 马慧芳,史忠植.一种高效稳定的链接分析算法[J]. 计算机应用研究 ,2011,28(2):488-491.(Ma Huifang, Shi Zhongzhi. Efficient and Stable Link Analysis Algorithm[J]. Application Research of Computers, 2011,28(2):488-491.)
[9] 郑庆华,刘均,田锋,等.Web知识挖掘:理论、方法与应用[M].北京:科学出版社,2010:78-102.(Zheng Qinghua, Liu Jun, Tian Feng, et al. Web Knowledge Mining: The Theory, Method and Application[M]. Beijing: Science Press, 2010:78-102.)
[10] 张玉峰,周磊,王志芳,等.领域本体构建与可视化展示研究[J]. 情报理论与实践 ,2012,35(10):95-98.(Zhang Yufeng, Zhou Lei, Wang Zhifang, et al. Research on Domain Ontology Construction and Visualization [J]. Information Studies: Theory & Application, 2012,35(10):95-98.)
[11] 张乃洲,李石君,余伟,等.使用联合链接相似度评估爬取Web资源[J]. 计算机学报 ,2010,33(12):2267-2280.(Zhang Naizhou, Li Shijun, Yu Wei, et al. Using a Joint Link Similarity Evaluation Based Method for Crawling the Resources on Web[J].Chinese Journal of Computers, 2010,33(12):2267-2280.)
[12] 王志芳.基于领域本体的文本挖掘算法与实验研究[D].武汉:武汉大学,2011.(Wang Zhifang. Research on Text Mining Algorithm and Experiment Based on Domain Ontology[D]. Wuhan: Wuhan University, 2011.)
[13] Pant G, Menczer F. Topical Crawling for Business Intelligence [C]. In: Proceedings of the 7th European Conference on Research and Advanced Technology for Digital Libraries. 2003: 233-244.)
[1] Yutian Shi,Qinghua Zhu,Yuxiang Zhao,Xiaowei Chen. Evaluating the Influence of China’s Webcast Platforms Based on Link Analysis[J]. 数据分析与知识发现, 2017, 1(9): 40-48.
[2] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[3] Zixuan Wang,Xiaoqiu Le,Yuanbiao He. Recognizing Core Topic Sentences with Improved TextRank Algorithm Based on WMD Semantic Similarity[J]. 数据分析与知识发现, 2017, 1(4): 1-8.
[4] Dongsheng Zhai,Wenhao Cai,Jie Zhang,Zhenfei Li. An Improved Method of Semantic Similarity Calculation of Chinese Trademarks[J]. 数据分析与知识发现, 2017, 1(11): 19-28.
[5] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[6] Ba Zhichao,Li Gang,Zhu Shiwei. Similarity Measurement of Research Interests in Semantic Network[J]. 现代图书情报技术, 2016, 32(4): 81-90.
[7] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[8] Liu Huailiang, Du Kun, Qin Chunxiu. Research on Chinese Text Categorization Based on Semantic Similarity of HowNet[J]. 现代图书情报技术, 2015, 31(2): 39-45.
[9] Fan Xuexue, Wang Zhirong, Xu Wu, Liang Yin, Ma Xiaohu. Research on Semantic Similarity Estimation Algorithm of Medical Terminology Based on Medical Ontology[J]. 现代图书情报技术, 2015, 31(12): 57-64.
[10] Hu Jiming, Xiao Lu. Semantic Incremental Improvement on Vector Space Model for Text Modeling[J]. 现代图书情报技术, 2014, 30(10): 49-55.
[11] Sun Haixia, Li Junlian, Li Danya, Wu Yingjie, Li Xiaoying. The Study on Semantic Mapping from Free Word to Subject Headings Based on Semantic System of CMeSH[J]. 现代图书情报技术, 2013, 29(11): 46-51.
[12] Ma Junhong. A Staged and Integrated Semantic Similarity Algorithm of Text[J]. 现代图书情报技术, 2013, 29(10): 20-26.
[13] Wang Li. Dynamic Faceted Method Based on Keyword Chains[J]. 现代图书情报技术, 2012, 28(7): 76-81.
[14] Xing Meifeng. Study on Solution to Redundancy of Scientific Literature Keywords[J]. 现代图书情报技术, 2012, 28(1): 34-39.
[15] Xu Jian Zhang Zhixiong Xiao Zhuo Deng Zhaojun. Review on Scientific and Technical Term Semantic Similarity Measure Methods[J]. 现代图书情报技术, 2010, 26(7/8): 51-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938