Please wait a minute...
New Technology of Library and Information Service  2013, Vol. Issue (6): 23-29    DOI: 10.11925/infotech.1003-3513.2013.06.04
Current Issue | Archive | Adv Search |
Study on the Model of Automatic Extraction and Annotation of Trail Cases
She Guiqing, Zhang Yongan
School of Economics and Management, Beijing University of Technology, Beijing 100124, China
Download: PDF(1413 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper constructs an Ontology-based automatic extraction and annotation model for the massive texts of criminal judgments combined with the case-Ontology. It uses regular expressions to construct extraction rules and templates for the semi-structured characteristics of the texts of legal cases, according to the structure of the documents and the clue words. Besides, it applies natural language processing techniques for the accurate information extraction, then gives semantic annotation of the results of extraction for building an Ontology knowledge base of legal cases, to realize the transformation of case texts to semantic information Web, for the further similar case retrieval and judge recommendation. And the experiment shows a good result.
Key wordsSemantic annotation      Ontology      Rule extraction      Natural language processing     
Received: 22 March 2013      Published: 24 July 2013
:  D926.22  

Cite this article:

She Guiqing, Zhang Yongan. Study on the Model of Automatic Extraction and Annotation of Trail Cases. New Technology of Library and Information Service, 2013, (6): 23-29.

URL:     OR

[1] Uschold M,Gruninger M.Ontologies and Semantics for Seamless Connectivity[J]. ACM SIGMOD Record,2004,33(4):58-64.
[2] Berners-Lee T, Hendler J,Lassila O.The Semantic Web[J].Scientific American Magazine,2001,284(5): 28-37.
[3] Cardie C.Empirical Methods in Information Extraction[J].AI Magazine,1997,18(4):65-78.
[4] Popov B,Kiryakov A, Kirilov A, et al.KIM-Semantic Annotation Platform[C].In: Proceedings of the 2nd International Semantic Web Conference(ISWC’2003),Florida,USA. 2003:834-849.
[5] 荆涛,左万利,孙吉贵, 等.中文网页语义标注:由句子到RDF表示[J]. 计算机研究与发展,2008,45(7):1221-1231.(Jing Tao,Zuo Wanli,Sun Jigui,et al. Semantic Annotation of Chinese Web Pages: From Sentences to RDF Representations[J].Computer Research and Development,2008,45(7):1221-1231.)
[6] 高琦.基于Bootstrapping的本体标注方法研究[D].重庆:重庆大学,2010.(Gao Qi.A New Annotate Ontology Method Based on Bootstrapping[D].Chongqing:Chongqing University,2010.)
[7] Pandit S. Ontology-guided Extraction of Structured Information from Unstructured Text: Identifying and Capturing Complex Relationships[D].Ames: Iowa State University,2010.
[8] 章勇,吕俊白.基于Protégé的本体建模研究综述[J]. 福建电脑,2011, 27(1):43-45.(Zhang Yong,Lv Junbai.The Research Review of Ontology Modeling Based on Protégé[J].FuJian Computer,2011, 27(1):43-45.)
[9] 刘克强.2009 共享版 ICTCLAS 的分析与使用[J]. 科教文汇,2009(22): 271.(Liu Keqiang.The Analysis and Instructions for the 2009 Shared Version Of ICTCLAS[J].Education Science & Culture Magazine,2009(22): 271.)
[1] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Chunlei Yang. Quantification Constraint System for Pragmatic Disambiguation: From Linguistic Design to Computational Implementation[J]. 数据分析与知识发现, 2017, 1(11): 1-11.
[15] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938