Please wait a minute...
New Technology of Library and Information Service  2013, Vol. Issue (6): 76-84    DOI: 10.11925/infotech.1003-3513.2013.06.12
Current Issue | Archive | Adv Search |
Analyzing the Demand of Online Product Review System’ s Features Using Kano Model: An Empirical Study of Chinese Online Shops
Sun Xiaoling1, Zhao Yuxiang2, Zhu Qinghua2
1. School of Management & Engineering, Nanjing University, Nanjing 210093, China;
2. School of Information Management, Nanjing University, Nanjing 210093, China
Download: PDF(798 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  Based on the impact of electronic word-of-mouth and critical issues of online information system design, this paper conducts a feature package of online product review system by a survey of mainstream Chinese online shops. Kano model then employs to classify customer demand about these features. The result indicates that among various features most of them are dispensable except of features which making deep mining on argument quality and valence such as tag clouds based on text mining as well as multiple valences. It can be important reference when dealing with system design and improvement.
Key wordsOnline shopping      Electronic word-of-mouth      Online review system      Information organizing      Kano model      Electronic commerce     
Received: 16 April 2013      Published: 24 July 2013
:  G350  

Cite this article:

Sun Xiaoling, Zhao Yuxiang, Zhu Qinghua. Analyzing the Demand of Online Product Review System’ s Features Using Kano Model: An Empirical Study of Chinese Online Shops. New Technology of Library and Information Service, 2013, (6): 76-84.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2013.06.12     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2013/V/I6/76

[1] Park D, Lee J. eWOM Overload and Its Effect on Consumer Behavioural Intention Depending on Consumer Involvement[J]. Electronic Commerce Research and Applications, 2008, 7(4):386-398.
[2] Chevalier J A, Mayzlin D. The Effect of Word of Mouth on Sales: Online Book Reviews[J]. Journal of Marketing Research, 2006,43(3):345-354.
[3] 龚诗阳,刘霞,刘洋,等.网络口碑决定产品命运吗——对线上图书评论的实证分析[J]. 南开管理评论,2012,15(4): 118-128.(Gong Shiyang, Liu Xia, Liu Yang, et al. Does Online Word-of-Mouth Determine Product’s Fate: An Empirical Analysis of Online Book Review[J]. Nankai Business Review, 2012,15(4):118-128.)
[4] 马玉涛,蔡淑琴,叶波,等.基于DOC视角的在线客户评论加工模型研究[J]. 情报学报,2011,30(12): 1293-1301.(Ma Yutao, Cai Shuqin, Ye Bo, et al. Study on the Processing Model of Online Customer Reviews from DOC Perspective[J].Journal of the China Society for Scientific and Technical Information, 2011, 30(12):1293-1301).
[5] Liu Q, Karahanna E, Watson R T. Unveiling User-generated Content: Designing Websites to Best Present Customer Reviews[J].Business Horizons, 2011,54(3):231-240.
[6] 戴维·迈尔斯.社会心理学(英文版)[M].北京:人民邮电出版社, 2012: 228-244.(Myers D G. Social Psychology[M].Beijing: Post & Telecom Press, 2012: 228-244.)
[7] Cheung C M K, Thadani D R. The Impact of Electronic Word-of-mouth Communication: A Literature Analysis and Integrative Model[J]. Decision Support Systems, 2012, 54(1): 461-470.
[8] 蔡淑琴, 邱洁, 王旸,等.互联网点评信息的有序性与序化方法研究[J]. 情报杂志, 2012, 31(3): 168-173, 167.(Cai Shuqin, Qiu Jie, Wang Yang, et al. Order and Ordering Methods of Online Customer Reviews[J]. Journal of Intelligence, 2012, 31(3):168-173,167.)
[9] Mudambi S M, Schuff M. What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com[J]. MIS Quarterly, 2010, 34(1): 185-200.
[10] Purnawirawan N, Pelsmacker P D, Dens N. Balance and Sequence in Online Reviews: How Perceived Usefulness Affects Attitudes and Intentions[J]. Journal of Interactive Marketing, 2012, 26(4): 244-255.
[11] Sikora R T, Chauhan K. Estimating Sequential Bias in Online Reviews: A Kalman Filtering Approach[J]. Knowledge-Based Systems, 2012, 27:314-321.
[12] Hu N, Zhang J, Pavlou P A. Overcoming the J-shaped Distribution of Product Reviews[J]. Communications of the ACM, 2009, 52(10):144-147.
[13] Qiu L Y, Wang W Q. The Effects of Message Order and Information Chunking on eWOM Persuasion[C]. In: Proceedings of the 15th Pacific-Asia Conference on Information Systems (PACIS 2011), Brisbane, Australia.2011.
[14] Schlosser A E. Can Including Pros and Cons Increase the Helpfulness and Persuasiveness of Online Reviews? The Interactive Effective Effects of Rating and Arguments[J]. Journal of Consumer Psychology, 2011, 21(3): 226-239.
[15] Yatani K, Novati M, Trusty A, et al. Review Spotlight: A User Interface for Summarizing User-generated Reviews Using Adjective-noun Word Pairs[C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’11), Vancouver, Canada. New York: ACM Press, 2011:1541-1550.
[16] Kano N, Seraku N, Takahashi F, et al. Attractive Quality and Must-be Quality[J]. Journal of the Japanese Society for Quality Control (in Japanese), 1984, 14 (2): 39-48.
[17] Xu Q, Jiao R J, Yang X, et al. An Analytical Kano Model for Customer Need Analysis[J]. Design Studies, 2009, 30(1):87-110.
[18] 唐中君, 龙玉玲.基于Kano模型的个性化需求获取方法研究[J]. 软科学, 2012, 26(2): 127-131.(Tang Zhongjun, Long Yuling. Research on Method of Acquiring Individual Demand Based on Kano Model[J]. Soft Science, 2012, 26(2): 127-131.).
[19] Shen X X, Tan K C, Xie M. An Integrated Approach to Innovative Product Development Using Kano’s Model and QFD[J]. European Journal of Innovation Management, 2000, 3(2):91-99.
[20] Tontini G. Integrating the Kano Model and QFD for Designing New Products[J]. Total Quality Management & Business Excellence, 2007, 18(5): 599-612.
[21] Lee Y C, Huang S Y. A New Fuzzy Concept Approach for Kano’s Model[J].Expert Systems with Applications, 2009,36(3): 4479-4484.
[22] von Dran G M, Zhang P, Small R. Quality Websites: An Application of the Kano Model to Website Design[C]. In: Proceedings of AMCIS 1999, Milwaukee, USA. 1999: 314.
[23] Zhang P, von Dran G M. User Expectations and Rankings of Quality Factors in Different Web Site Domains[J]. International Journal of Electronic Commerce, 2002, 6(2): 9-33.
[24] Kuo Y F. Integrating Kano’s Model into Web-community Service Quality[J]. Total Quality Management & Business Excellence, 2004, 15(7): 925-939.
[25] Berger C, Blauth R, Boger D, et al. Kano’s Method for Understanding Customer-defined Quality[J]. Center for Quality of Management Journal, 1993,2(4):3-35.
[26] Brynjolfsson E, Hu Y J, Smith M D. From Niches to Riches: Anatomy of the Long Tail[J]. MIT Sloan Management Review, 2006, 47(4):67-71.
[27] Brynjolfsson E, Hu Y J, Simester D. Goodbye Pareto Principle, Hello Long Tail: The Effect of Search Costs on the Concentration of Product Sales[J]. Management Science, 2011, 57(8): 1373-1386.
[28] Khare A, Labrecque L I, Asare A K. The Assimilative and Contrastive Effects of Word-of-Mouth Volume: An Experimental Examination of Online Consumer Ratings[J]. Journal of Retailing, 2011, 87(1): 111-126.
[29] Walther J B, Liang Y, Ganster T, et al. Online Reviews, Helpfulness Ratings, and Consumer Attitudes: An Extension of Congruity Theory to Multiple Sources in Web 2.0[J]. Journal of Computer-Mediated Communication, 2012,18(1): 97-112.
[30] Willemsen L M, Neijens P C, Bronner F. The Ironic Effect of Source Identification on the Perceived Credibility of Online Product Reviewers[J]. Journal of Computer-Mediated Communication, 2012,18(1): 16-31.
[31] Wang Y, Fesenmaier D R. Towards Understanding Members’ General Participation in and Active Contribution to an Online Travel Community[J]. Tourism Management, 2004, 25(6):709-722.
[32] Lampel J, Bhalla A. The Role of Status Seeking in Online Communities: Giving the Gift of Experience[J]. Journal of Computer-Mediated Communication, 2007, 12(2):434-455.
[33] Eagly A H, Chaiken S. The Psychology of Attitudes[M]. Orlando: Harcourt Brace Jovanovich College Publishers, 1993: 325.
[34] McKinney V, Yoon K, Zahedi F M. The Measurement of Web-customer Satisfaction: An Expectation and Disconfirmation Approach[J]. Information Systems Research, 2002, 13 (3): 296-315.
[1] Liu Honglian,Zhang Pengyi,Wang Jun. Multi-session Product Information Seeking Behaviors, Motivation, and Influencing Factors[J]. 现代图书情报技术, 2016, 32(4): 1-7.
[2] Xu Yingnan. Analysis of Commodity Parameters Browsing Preference in Consumer’s Online Shopping Decision-making——Taking Digital Camera for Example[J]. 现代图书情报技术, 2012, (12): 52-57.
[3] Jiang Xuefeng. Methods of Implementing Personalized Service for Electronic Commerce and Digital Library[J]. 现代图书情报技术, 2004, 20(9): 95-97.
[4] Wu Si,Ling Yonghong. Multi-Lever Security Model of Electronic Commerce and Its Application[J]. 现代图书情报技术, 2004, 20(6): 76-78.
[5] Liang Wen. Web Technology and Its Supports for the Electronic Commerce[J]. 现代图书情报技术, 2003, 19(1): 69-71.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn