Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (10): 15-19    DOI: 10.11925/infotech.1003-3513.2013.10.03
Current Issue | Archive | Adv Search |
NCBO-based Ontology Mapping and Application
Wang Liwei, Mu Dongmei, Wang Wei
School of Public Health, Jilin University, Changchun 130021, China
Download: PDF(447 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper introduces the research and practice conditions of the Ontology mapping service provided by United States National Center for Biomedical Ontology (NCBO), analyzes the rationale, classification and method of NCBO Ontology mapping, realizes Ontology mapping between MedDRA and ICD with the NCBO project. Then Java parsing for the semi-structure XML results is used to obtain the semantic computatioin-enabling structured data. This case study showes the application value of NCBO-based Ontology mapping. The research can provide the reference method of data transformation and data basics for semantic processing, specifically semantic computation and data mining in semantic interoperatability, and can provide beneficial reference for Ontology fusion and semantic interconnection research in other fields.
Key wordsOntology mapping      REST      XML parse      Data conversion     
Received: 14 June 2013      Published: 04 November 2013
:  TP182  

Cite this article:

Wang Liwei, Mu Dongmei, Wang Wei. NCBO-based Ontology Mapping and Application. New Technology of Library and Information Service, 2013, 29(10): 15-19.

URL:     OR

[1] AI3. An Intrepid Guide to Ontologies [EB/OL]. [2013-05-26].
[2] BioPortal Mappings Service [EB/OL]. [2013-05-27].
[3] Noy N F, Griffith N, Musen M A. Collecting Community-based Mappings in an Ontology Repository [C]. In: Proceedings of the 7th International Semantic Web Conference(ISWC'08). Springer, 2008:371-386.
[4] Jonquet C, LePendu P, Falconer S, et al. NCBO Resource Index: Ontology-based Search and Mining of Biomedical Resources [J]. Journal of Web Semantics, 2011,9(3):316-324.
[5] Fielding R T. Architectural Styles and the Design of Network-based Software Architectures[D]. Irvine: University of California, 2000.
[6] 陈小毛, 汤文兵. Java 解析 XML 的方法比较研究[J]. 中国新技术新产品, 2009(15):25. (Chen Xiaomao, Tang Wenbing. Comparative Research on Methods of XML Parsing with Java [J]. China New Technologies and Products, 2009(15):25.)
[7] U.S. Food and Drug Administration. FDA Adverse Event Reporting System (FAERS) (Formerly AERS) [EB/OL].[2013-07-15].
[8] Rawlins M D. Spontaneous Reporting of Adverse Drug Reactions. I: The Data[J]. British Journal of Clinical Pharmacology, 1988,26(1): 1-5.
[9] ADEpedia. A Scalable and Standardized Knowledge Base of Adverse Drug Events [EB/OL]. [2013-07-07].
[10] Wei W Q, Cronin R M, Xu H, et al. Development and Evaluation of an Ensemble Resource Linking Medications to Their Indications[J]. Journal of the American Medical Informatics Association, 2013, 20(5):954-961.
[1] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] Wancheng Chen,Haoran Dai,Yinghan Jin. Appraising Home Prices with HEDONIC Model: Case Study of Seattle, U.S.[J]. 数据分析与知识发现, 2019, 3(5): 19-26.
[3] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[4] Cheng Zhou,Hongqin Wei. Identifying Crowd Participants with Modified Random Forests Algorithm[J]. 数据分析与知识发现, 2018, 2(7): 46-54.
[5] Yuan Chen,Chaoqun Wang,Zhongyi Hu,Jiang Wu. Identifying Malicious Websites with PCA and Random Forest Methods[J]. 数据分析与知识发现, 2018, 2(4): 71-80.
[6] Jun Hou,Kui Liu,Qianmu Li. Classification Recommendation Based on ESSVM[J]. 数据分析与知识发现, 2018, 2(3): 9-21.
[7] Hongwei Liu,Hongming Gao,Li Chen,Mingjun Zhan,Zhouyang Liang. Identifying User Interests Based on Browsing Behaviors[J]. 数据分析与知识发现, 2018, 2(2): 74-85.
[8] Liyi Zhang,Yiran Li,Xuan Wen. Predicting Repeat Purchase Intention of New Consumers[J]. 数据分析与知识发现, 2018, 2(11): 10-18.
[9] Weimin Lv,Xiaomei Wang,Tao Han. Recommending Scientific Research Collaborators with Link Prediction and Extremely Randomized Trees Algorithm[J]. 数据分析与知识发现, 2017, 1(4): 38-45.
[10] Jin Zeng,Wei Lu,Heng Ding,Haihua Chen. Modeling User’s Interests Based on Image Semantics[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[11] Mengyao Xie,Xuwei Pan. Constructing Dynamic Social Tag Cloud for User Interests[J]. 数据分析与知识发现, 2017, 1(2): 35-40.
[12] Xinwei Yuan,Shaohua Yang,Chaochao Wang,Zhanhe Du. Identifying Lead Players of User Innovation Communities Based on Feature Extraction and Random Forest Classification[J]. 数据分析与知识发现, 2017, 1(11): 62-74.
[13] Li Daoguo,Li Lianjie,Shen Enping. New Collaborative Filtering Recommendation Algorithm Based on User Rating Time[J]. 现代图书情报技术, 2016, 32(9): 65-69.
[14] Ba Zhichao,Li Gang,Zhu Shiwei. Similarity Measurement of Research Interests in Semantic Network[J]. 现代图书情报技术, 2016, 32(4): 81-90.
[15] Qun Zhang, Hongjun Wang, Lunwen Wang. Classifying Short Texts with Word Embedding and LDA Model[J]. 数据分析与知识发现, 2016, 32(12): 27-35.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938