Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (10): 53-58    DOI: 10.11925/infotech.1003-3513.2013.10.09
Current Issue | Archive | Adv Search |
Formation of Interest-based Peer-to-Peer Community
Zhao Pengwei, Ma Lin, Qin Chunxiu
School of Economics & Management, Xidian University, Xi'an 710071, China
Download: PDF(808 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  Based on common interest and purpose, a virtual community in P2P networks is formed easily by a set of peers. Based on the brief summary of the existing research of P2P communities formation, this paper analyzes its formalization definition and structure, describes the representing method of user interests, selects the calculation method of the interest correlation between peer nodes, and then by means of hierarchical clustering method and K-means clustering method to study the P2P community formation process, so as to provide reference for further research of P2P communities.
Key wordsUser interest      P2P community      Hierarchical clustering method      K-means     
Received: 11 July 2013      Published: 04 November 2013
:  G351.1  

Cite this article:

Zhao Pengwei, Ma Lin, Qin Chunxiu. Formation of Interest-based Peer-to-Peer Community. New Technology of Library and Information Service, 2013, 29(10): 53-58.

URL:     OR

[1] 互联网时代的社区化及其意义[EB/OL].[2013-06-05]. Age of the Internet Community and Its Significance[EB/OL].[2013-06-05].
[2] 杨杏.语义对等网及其知识资源组织方法研究[D].西安: 西安电子科技大学,2013.(Yang Xing. A Study on Semantic Peer-to-Peer Web and the Organization Method of Knowledge Resources [D].Xi'an: Xidian University,2013.)
[3] 牛尔力,孙晓辉,陈君,等.Gnutella中基于兴趣的社区结构研究[J]. 计算机工程,2009,35(5):76-78.(Niu Erli,Sun Xiaohui, Chen Jun, et al. Research on Interest-based Community Structure of Gnutella[J]. Computer Engineering, 2009,35(5):76-78.)
[4] Khambatti M S, Ryu K D, Dasgupta P. Efficient Discovery of Implicitly Formed Peer-to-Peer Communities[J].International Journal of Parallel and Distributed Systems and Networks, 2002, 5(4):155-164.
[5] 张亮, 邹福泰,张文举, 等. 基于社区的对等网络信息检索[J]. 上海交通大学学报,2006,40 (5):767-770.(Zhang Liang, Zou Futai, Zhang Wenju, et al.Community-based Information Retrieval in Peer-to-Peer Network [J].Journal of Shanghai Jiaotong University,2006,40(5):767-770.)
[6] 周晓波,周健,卢汉成,等.一种基于层次化兴趣的非结构化P2P拓扑形成模型[J]. 软件学报,2007, 18(12):3131-3138.(Zhou Xiaobo, Zhou Jian, Lu Hancheng,et al. A Layered Interest Based Topology Organizing Model for Unstructured P2P[J].Journal of Software,2007,18(12):3131-3138.)
[7] Wang L, Hu G, Liu L. Research on P2P Semantic Community of Interest and Trust Evaluation[C].In: Proceedings of the 2008 International Conference on Advanced Computer Theory and Engineering (ICACTE'08).Washington, D C:IEEE Computer Society,2008:308-312.
[8] 赵捧未,李春燕,窦永香.语义对等网环境下基于节点知识地图的用户模型构建[J]. 情报理论与实践,2012,35(2):104-108.(Zhao Pengwei,Li Chunyan,Dou Yongxiang. Construction of User Interest Model Based on Peer Knowledge Map in Semantic Peer-to-Peer Network[J].Information Studies: Theory & Application,2012,35(2):104-108.)
[9] Qin C,Zhao P,Dou Y.Model of Semantic Community Based on Knowledge Map on Peer-to-Peer Networks[C].In:Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE'12). Washington, D C: IEEE Computer Society, 2012:1866-1869.
[10] 赵银春,付关友,朱征宇.基于Web浏览内容和行为相结合的用户兴趣挖掘[J]. 计算机工程,2005, 31(12):93-94.(Zhao Yinchun,Fu Guanyou,Zhu Zhengyu. User Interest Mining of Combining Web Content and Behavior Analysis[J]. Computer Engineering,2005,31(12):93-94.)
[11] 李瑾,周竹荣.基于用户行为和社区发现的P2P资源检索方法[J]. 计算机工程与应用,2012,48(21):94-98.(Li Jin,Zhou Zhurong. Search Method of P2P Resource Based on User Behavior and Community Discovery[J].Computer Engineering and Applications,2012,48(21):94-98.)
[1] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[3] Hongwei Liu,Hongming Gao,Li Chen,Mingjun Zhan,Zhouyang Liang. Identifying User Interests Based on Browsing Behaviors[J]. 数据分析与知识发现, 2018, 2(2): 74-85.
[4] Xiaoting Jia,Mingyang Wang,Yu Cao. Automatic Abstracting of Chinese Document with Doc2Vec and Improved Clustering Algorithm[J]. 数据分析与知识发现, 2018, 2(2): 86-95.
[5] Minghui Liu. Risk Assessment of Civil Aviation Terrorism Based on K-means Clustering[J]. 数据分析与知识发现, 2018, 2(10): 21-26.
[6] Xueying Wang,Zixuan Zhang,Hao Wang,Sanhong Deng. Evaluating Brands of Agriculture Products: A Literature Review[J]. 数据分析与知识发现, 2017, 1(7): 13-21.
[7] Jin Zeng,Wei Lu,Heng Ding,Haihua Chen. Modeling User’s Interests Based on Image Semantics[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[8] Qin Guan, Sanhong Deng, Hao Wang. Chinese Stopwords for Text Clustering: A Comparative Study[J]. 数据分析与知识发现, 2017, 1(3): 72-80.
[9] Mengyao Xie,Xuwei Pan. Constructing Dynamic Social Tag Cloud for User Interests[J]. 数据分析与知识发现, 2017, 1(2): 35-40.
[10] Xiaofei Fang,Xiaoxi Huang,Rongbo Wang,Zhiqun Chen,Xiaohua Wang. Identifying Hot Topics from Mobile Complaint Texts[J]. 数据分析与知识发现, 2017, 1(2): 19-27.
[11] Ruilun Liu,Wenhao Ye,Ruiqing Gao,Mengjia Tang,Dongbo Wang. Research on Text Clustering Based on Requirements of Big Data Jobs[J]. 数据分析与知识发现, 2017, 1(12): 32-40.
[12] Niu Liang. New Research and Application with Co-topics Network[J]. 现代图书情报技术, 2016, 32(7-8): 137-146.
[13] Gui Sisi, Lu Wei, Huang Shihao, Zhou Pengcheng. User Interest Prediction Combing Topic Model and Multi-time Function[J]. 现代图书情报技术, 2015, 31(9): 9-16.
[14] Chen Ting, Han Tao, Li Zexia, Li Guopeng, Wang Xiaomei. Research on Comparison Method of Scientific Funding Layout——Take NSF and EU FP Grants for Instance[J]. 现代图书情报技术, 2015, 31(7-8): 89-96.
[15] Ren Yuwei, Lv Xueqiang, Li Zhuo, Xu Liping. Named Entity Recognition from Search Log[J]. 现代图书情报技术, 2015, 31(6): 49-56.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938