Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (10): 59-65    DOI: 10.11925/infotech.1003-3513.2013.10.10
Current Issue | Archive | Adv Search |
The Common Knowledge Mining for the Internet Public Opinion Analysis
Duan Jianyong, Cheng Liwei, Zhang Mei, Gao Zhen'an
College of Information Engineering, North China University of Technology, Beijing 100144, China
Download: PDF(514 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  The common knowledge mining is an effective way for the Internet public opinion analysis. This paper builds the common knowledge base for the common sentimental elements and the common language patterns. The common sentimental knowledge is mined by the semi-supervised method from the training corpus. This knowledge base is also quantified and dynamically expanded. The common language pattern knowledge includes three kinds of fixed models, such as transform model, extreme sentimental verb model and distance dependency model. Finally the common knowledge bases are testified in the domains of religions and hotels, and proved the effectiveness in the system implant performance.
Key wordsPublic opinion analysis      Common knowledge mining      Sentimental element      Language structure     
Received: 01 July 2013      Published: 04 November 2013
:  TP391  

Cite this article:

Duan Jianyong, Cheng Liwei, Zhang Mei, Gao Zhen'an. The Common Knowledge Mining for the Internet Public Opinion Analysis. New Technology of Library and Information Service, 2013, 29(10): 59-65.

URL:     OR

[1] 崔薇,曾润喜,王国华. 中国网络舆情研究文献计量分析[J]. 情报科学, 2011,29(1): 131-135.(Cui Wei, Zeng Runxi, Wang Guohua. Bibliometric Analysis of Internet Public Opinion in China[J]. Information Science, 2011, 29(1): 131-135.)
[2] 魏韡,向阳,陈千.中文文本情感分析综述[J]. 计算机应用,2011,31(12): 3321-3323.(Wei Wei, Xiang Yang,Chen Qian. Survey on Chinese Text Sentiment Analysis[J].Journal of Computer Applications, 2011,31(12): 3321-3323.)
[3] 李纲,程洋洋,寇广增. 句子情感分析及其关键问题[J]. 图书情报工作,2010,54(11): 104-107.(Li Gang, Cheng Yangyang, Kou Guangzeng. Key Problems of Sentence Level Sentiment Analysis[J]. Library and Information Service, 2010, 54(11): 104-107.)
[4] 曹树金,张学莲,陈忆金. 网络舆情意见挖掘中极性词典构建和极性识别方法研究[J]. 图书情报知识,2012(1): 60-65.(Cao Shujin, Zhang Xuelian, Chen Yijin. A Study on the Polar Word Identification Method and Polarity Dictionary Construction of Online Public Opinion Mining[J]. Document, Information & Knowledge, 2012 (1): 60-65.)
[5] 段建勇,谢宇超,张梅.基于句法语义的网络舆论情感倾向性评价技术研究[J]. 情报杂志,2012,31(1): 147-150.(Duan Jianyong, Xie Yuchao, Zhang Mei. The Sentimental Analysis Technology for the Internet Public Opinion Using Syntax and Semantic Information[J]. Journal of Intelligence, 2012,31(1): 147-150.)
[6] 徐冰,赵铁军,王山雨,等. 基于浅层句法特征的评价对象抽取研究[J]. 自动化学报,2011, 37(10): 1241-1247.(Xu Bing, Zhao Tiejun, Wang Shanyu, et al. Extraction of Opinion Targets Based on Shallow Parsing Features[J]. Acta Automatica Sinica, 2011, 37(10): 1241-1247.)
[7] 赵妍妍,秦兵,车万翔,等. 基于句法路径的情感评价单元识别[J]. 软件学报,2011, 22(5): 887-898.(Zhao Yanyan, Qin Bing, Che Wanxiang, et al. Appraisal Expression Recognition Based on Syntactic Path[J].Journal of Software,2011,22(5):887-898.)
[8] Maks I,Vossen P.A Verb Lexicon Model for Deep Sentiment Analysis and Opinion Mining Applications[C].In:Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA'11). Stroudsburg: Association for Computational Linguistics, 2011: 10-18.
[9] Yang C C, Wong Y C, Wei C. Classifying Web Review Opinions for Consumer Product Analysis[C].In: Proceedings of the 11th International Conference on Electronic Commerce (ICEC'09). New York: ACM, 2009: 57-63.
[10] Duric A, Song F.Feature Selection for Sentiment Analysis Based on Content and Syntax Models[C].In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis. 2011: 96-103.
[11] 李寿山,黄居仁. 基于Stacking 组合分类方法的中文情感分类研究[J]. 中文信息学报, 2010, 24(5): 56-61.(Li Shoushan, Huang Churen. Chinese Sentiment Classification Based on Stacking Combination Method[J].Journal of Chinese Information Processing, 2010, 24(5): 56-61.)
[12] 谢丽星,周明,孙茂松. 基于层次结构的多策略中文微博情感分析和特征抽取[J]. 中文信息学报,2012, 26(1):73-83.(Xie Lixing, Zhou Ming, Sun Maosong. Hierarchical Structure Based Hybrid Approach to Sentiment Analysis of Chinese Micro Blog and Its Feature Extraction[J]. Journal of Chinese Information Processing, 2012, 26(1): 73-83.)
[13] 王波.基于跨领域知识的基金评论情感分析[J]. 情报杂志,2011,30(2): 44-47.(Wang Bo. Sentiment Analysis for Fund Reviews Based on Cross Domain Knowledge[J].Journal of Intelligence, 2011,30(2): 44-47.)
[14] Liu Y, Yu X, An A, et al. Riding the Tide of Sentiment Change: Sentiment Analysis with Evolving Online Reviews[J].World Wide Web,2013,16(4): 477-496.
[1] Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[2] Cen Yonghua,Wang Yuefen. Social Public Opinion Analysis and Decision Making Support with Big Data[J]. 现代图书情报技术, 2016, 32(7-8): 3-11.
[3] Wang Wei,Xu Xin. Online Public Opinion Hotspot Detection and Analysis Based on Document Clustering[J]. 现代图书情报技术, 2009, 3(3): 74-79.
[4] Qian Aibing. A Model for Analyzing Public Opinion Under the Web and Its Implementation[J]. 现代图书情报技术, 2008, 24(4): 49-55.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938