Please wait a minute...
New Technology of Library and Information Service  2013, Vol. 29 Issue (10): 73-78    DOI: 10.11925/infotech.1003-3513.2013.10.12
Current Issue | Archive | Adv Search |
Study on Ontology Relation Extraction in Chinese Patent Documents
Gu Jun1, Xu Xin2
1. Baoshan Iron and Steel Co, Ltd., Shanghai 201900, China;
2. Department of Informatics, Business School, East China Normal University, Shanghai 200241, China
Download: PDF(570 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper promotes a method which collects the non-taxonomic relation from the Chinese patents' texts. Firstly, it analyzes the syntax of abstract texts, then constructs the sub-sentences extraction rules by domain sentence,character sentence, module & craft sentence and effect sentence. Secondly, artificially labels the terms of sub-sentences by label symbols such as BIEO, creates a scale of training data set. Thirdly, learns the training data and extracts the new data by CRFs. Finally, analyzes the experiment results and verifies the validity of the method.
Key wordsRule matching      CRFs      Ontology learning      Non-taxonomic relation     
Received: 19 July 2013      Published: 04 November 2013
:  TP391  

Cite this article:

Gu Jun, Xu Xin. Study on Ontology Relation Extraction in Chinese Patent Documents. New Technology of Library and Information Service, 2013, 29(10): 73-78.

URL:     OR

[1] 邵波. 企业竞争与反竞争情报中的专利分析研究[J]. 情报科学, 2006, 24(2):235-238.(Shao Bo. The Patent Analysis of Enterprise Competitive Intelligence and Counterintelligence[J]. Information Science,2006,24(2):235-238.)
[2] 100004说明书摘要[EB/OL].[2012-02-13]. (Instruction Abstract of 100004[EB/OL].[2012-02-13].
[3] Girju R,Moldovan D I. Text Mining for Causal Relations[C].In: Proceedings of the 15th International Florida Artificial Intelligence Research Society Conference, Florida, USA.AAAI Press,2002:360-364.
[4] Byrd R J, Ravin Y. Identifying and Extracting Relations in Text[C]. In: Proceedings of the 4th International Conference Application of Natural Language to Information System.1999.
[5] Maedche A,Staab S. Discovering Conceptual Relations from Text[C]. In: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000). 2000:321-325.
[6] 谭力,史忠植.基于数据挖掘的本体关系学习算法[J]. 郑州大学学报:理学版,2008,40(3):40-43.(Tan Li,Shi Zhongzhi. Ontology Conceptual Relation Learning Algorithm Based on Data Mining[J].Journal of Zhengzhou University:Natural Science Edition,2008,40(3):40-43.)
[7] 董丽丽,胡云飞,张翔.一种领域概念非分类关系的获取方法[J]. 计算机工程与应用, 2013,49(4):157-161.(Dong Lili,Hu Yunfei,Zhang Xiang. Method for Non-taxonomical Relations from Domain Concepts[J]. Computer Engineering and Applications,2013,49(4):157-161.)
[8] 于娟,党延忠.本体关系学习方法研究——概念特征词法[J]. 系统工程理论与实践,2012,32(7):1582-1590.(Yu Juan, Dang Yanzhong. Learning Ontology Relations from Documents:The Concept-feature Method[J]. Systems Engineering—Theory & Practice,2012,32(7):1582-1590.)
[9] Li L, Zhou R, Huang D. Two-phase Biomedical Named Entity Recognition Using CRFs[J]. Computational Biology and Chemistry,2009,33(4):334-338.
[10] Peng L, Liu Z, Zhang L. A Recognition Approach Study on Chinese Field Term Based Mutual Information/Conditional Random Fields[J]. Procedia Engineering,2012,29:1952-1956.
[11] Chen L, Qi L, Wang F. Comparison of Feature-level Learning Methods for Mining Online Consumer Reviews[J]. Expert Systems with Applications, 2012,39(10): 9588-9601.
[12] Esuli A, Marcheggiani D, Sebastiani F. An Enhanced CRFs-based System for Information Extraction from Radiology Reports[J].Journal of Biomedical Informatics,2013,46(3):425-435.
[13] 国家知识产权局[EB/OL].[2012-02-14]. (State Intellectual Property Office of the People's Republic of China[EB/OL]. [2012-02-14].
[14] ICTCLAS特色[EB/OL]. [2011-01-10]. (Features of ICTCLAS[EB/OL]. [2011-01-10].
[15] Lafferty J D, McCallum A, Pereira F C N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]. In: Proceedings of the 18th International Conference on Machine Learning (ICICML'01), Williamstown, MA, USA. San Francisco,CA, USA: Morgan Kaufmann Publishers Inc.,2001:282-289.
[16] CRF + +: Yet Another CRF Toolkit [EB/OL].[2012-03-11].
[17] 谷俊,王昊.基于领域中文文本的术语抽取方法研究[J]. 现代图书情报技术,2011(4):29-34.(Gu Jun,Wang Hao. Study on Term Extraction on the Basis of Chinese Domain Texts[J].New Technology of Library and Information Service,2011(4):29-34.)
[1] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[2] Wang Miping,Wang Hao,Deng Sanhong,Wu Zhixiang. Extracting Chinese Metallurgy Patent Terms with Conditional Random Fields[J]. 现代图书情报技术, 2016, 32(6): 28-36.
[3] Hui Zhu,Jianlin Yang,Hao Wang. Study on Construction of Domain Terminology Taxonomic Relation[J]. 现代图书情报技术, 2016, 32(1): 73-80.
[4] Duan Yufeng, Zhu Wenjing, Chen Qiao, Liu Wei, Liu Fenghong. The Study on Out-of-Vocabulary Identification on a Model Based on the Combination of CRFs and Domain Ontology Elements Set[J]. 现代图书情报技术, 2015, 31(4): 41-49.
[5] Shi Cui, Wang Yang, Yang Bin, Yao Ye. Identification of Non-nest Coordination for Chinese Patent Literature[J]. 现代图书情报技术, 2014, 30(10): 76-83.
[6] Meng Meiren, Ding Shengchun. Research on the Credibility of Online Chinese Product Reviews[J]. 现代图书情报技术, 2013, 29(9): 60-66.
[7] Liu Ping, Hu Yuehong. Review on Ontology Learning Methods and Techniques[J]. 现代图书情报技术, 2012, 28(1): 19-26.
[8] Huang Wei,Zhang Liyi. Research on Focused Merchandise Information Crawling Based on Semantic Crawler[J]. 现代图书情报技术, 2010, 26(1): 3-8.
[9] Wang Hao,Liu Jianhua,Su Xinning,Yang Jianlin. Research on Techniques and Systems of Ontology Learning for Semantic Web[J]. 现代图书情报技术, 2009, 3(1): 64-72.
[10] Fu Jibin,Liu Jie,Jia Keliang,Mao Jintao. Ontoloy Relationship Extraction Research Based on HowNet and Term Relevancy Degree[J]. 现代图书情报技术, 2008, 24(9): 36-40.
[11] Wang Hao,Deng Sanhong. Comparative Study on HMM and CRFs Applying in Information Extraction[J]. 现代图书情报技术, 2007, 2(12): 57-63.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938