Please wait a minute...
New Technology of Library and Information Service  2013, Vol. Issue (12): 88-93    DOI: 10.11925/infotech.1003-3513.2013.12.14
Current Issue | Archive | Adv Search |
A Research on Selecting Partners of Knowledge Collaboration in Virtual Community Based on Tag
Deng Weihua1, Yi Ming2
1. College of Public Administration, Huazhong Agricultural University, Wuhan 430070, China;
2. School of Information Management, Central China Normal University, Wuhan 430079, China
Download: PDF(607 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  This paper explores a new method of selecting partner of knowledge collaboration in virtual community based on Tag. It differentiates virtual community domain by tag clustering firstly, then projects and constructs new relational diagram of users and strengthens simply user knowledge relation based on the two branch of graph theory, and applies the network analysis method to determine the candidate partners set and to finish the candidate partner evaluation and selection. The experiment validates the conclusion of this paper.
Key wordsKnowledge collaboration      Selecting partners      Virtual community      Tag     
Received: 05 August 2013      Published: 08 January 2014
:  TP393  

Cite this article:

Deng Weihua, Yi Ming. A Research on Selecting Partners of Knowledge Collaboration in Virtual Community Based on Tag. New Technology of Library and Information Service, 2013, (12): 88-93.

URL:     OR

[1] 成全. 基于协同标注的科研社区知识融合机制研究[J]. 情报理论与实践, 2011, 34(8):20-25.(Cheng Quan. Study on a Implementation Mechanism for Knowledge Integration in the Research-oriented Community Based on Collaborative Annotation[J]. Information Studies: Theory & Application, 2011, 34(8):20-25.)
[2] Calvo B, Savi F. A Real-world Application of Monte Carlo Procedure for Debris Flow Risk Assessment[J]. Computers & Geosciences, 2009, 35(5):967-977.
[3] Van Groenendaal W J H, Kleijnen J P C. On the Assessment of Economic Risk: Factorial Design Versus Monte Carlo Methods[J].Reliability Engineering & System Safety, 1997, 57(1):91-102.
[4] Khashman A. Neural Networks for Credit Risk Evaluation: Investigation of Different Neural Models and Learning Scheme[J].Expert Systems with Applications, 2010, 37(9):6233-6239.
[5] 邓卫华, 易明, 王伟军. 虚拟社区中基于Tag的知识协同机制——基于豆瓣社区的案例研究[J]. 管理学报, 2012, 9(8):1203-1210.(Deng Weihua, Yi Ming, Wang Weijun. A Research on Knowledge Collaboration Mechanisms in Virtual Community Based on Tag: A Case Study on Douban[J]. Chinese Journal of Management, 2012, 9(8):1203-1210.)
[6] 樊治平, 冯博, 俞竹超.知识协同的发展及研究展望[J]. 科学学与科学技术管理, 2007, 28(11):85-91. (Fan Zhiping, Feng Bo, Yu Zhuchao. The Developing and Research Prospects for Knowledge Collaboration[J]. Science of Science and Management of S & T, 2007, 28(11):85-91.)
[7] Xu Y, Zhang L. Personalized Information Service Based on Social Bookmarking[C]. In: Proceedings of the 8th International Conference on Asian Digital Libraries: Implementing Strategies and Sharing Experiences (ICADL'05). Berlin, Heidelberg: Springer-Verlag, 2005:475-476.
[8] Nakamoto R, Nakajima S, Miyazaki J, et al. Tag-based Contextual Collaborative Filtering[J].IAENG International Journal of Computer Science, 2007, 34(2):214-219.
[9] Shiratsuchi K, Yoshii S, Furukawa M. Finding Unknown Interests Utilizing the Wisdom of Crowds in a Social Bookmark Service[C]. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IATW '06). Washington, D C: IEEE Computer Society, 2006:421-424.
[10] Schmitz C, Hotho A, Jaschke R, et al. Mining Association Rules in Folksonomies[C]. In: Proceedings of the IFCS2006 Conference. Berlin, Heidelberg: Springer-Verlag, 2006: 261-270.
[11] Beckmann M J. On Knowledge Networks in Science: Collaboration Among Equals[J]. The Annals of Regional Science, 1994, 28 (3): 233-242.
[12] 成全, 焦玉英.基于科研社区的协同知识生产行为研究[J]. 情报理论与实践, 2010, 33(11):44-49.(Cheng Quan, Jiao Yuying. Research on the Collaborative Knowledge Production Behavior Based on Scientific Research Community[J]. Information Studies: Theory & Application, 2010, 33(11):44-49.)
[13] 易明, 曹高辉, 毛进, 等. 基于Tag的知识主题网络构建与Web知识推送研究[J]. 中国图书馆学报, 2011, 37(4):4-12.(Yi Ming, Cao Gaohui, Mao Jin, et al. Knowledge Topic Network Construction and Web Knowledge Push Based on Tag[J]. Journal of Library Science in China, 2011, 37(4):4-12.)
[14] Bielenberg K, Zacher M. Groups in Social Software: Utilizing Tagging to Integrate Individual Contexts for Social Navigation[D]. Bremen: Universitt Bremen, 2005.
[15] Matts D J, Strogat Z S H. Collective Dynamics of 'Small-world' Networks[J].Nature, 1998, 393:440-442.
[16] Chang H, Su B B, Zhou Y P, et al. Assortativity and Act Degree Distribution of Some Collaboration Networks[J].Physica A: Statistical Mechanics and Its Applications, 2007, 383(2):687-702.
[17] Yook S H, Jeong H, Barabasi A-L, et al. Wighted Evolving Networks[J]. Physical Review Letters, 2001, 86(25):5835-5838.
[18] Zhou T, Ren J, Medo M, et al. Bipartite Network Projection and Personal Recommendation[J].Physical Review E, 2007, 76 (4):046115.
[19] 罗家德. 社会网分析讲义[M].北京:社会科学文献出版社, 2005.(Luo Jiade. Social Network Analysis[M].Bei jing: Social Sciences Academic Press, 2005.)
[20] 易明, 毛进, 邓卫华.基于社会化标签网络的细粒度用户兴趣建模[J]. 现代图书情报技术, 2011(4):35-41.(Yi Ming, Mao Jin, Deng Weihua. Fine-grained User Preference Modeling Based on Tag Networks[J]. New Technology of Library and Information Service, 2011(4):35-41.)
[21] 刘军.整体网分析讲义:UCINET软件实用指南[M].上海:上海人民出版社, 2009.(Liu Jun. Lectures on Whole Network Approach:A Practical Guide to UCINET[M].Shanghai:Shanghai People's Publishing House, 2009.)
[1] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[3] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[4] Guanghui Ye,Jinglan Hu,Jian Xu,Lixin Xia. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[5] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[6] Huixiang Xiong,Jiaxin Ye,Wuxuan Jiang. Clustering Social Tags with Improved DBSCAN Algorithm[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[7] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[8] Huixiang Xiong,Wuxuan Jiang. Clustering and Recommending Users Based on Tags and Relation Network[J]. 数据分析与知识发现, 2017, 1(6): 36-46.
[9] Meimei Chen,Kangjie Xue. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[10] Meimei Chen, Kangjie Xue. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[11] Mengyao Xie,Xuwei Pan. Constructing Dynamic Social Tag Cloud for User Interests[J]. 数据分析与知识发现, 2017, 1(2): 35-40.
[12] Bo Guo,Shouguang Li,Hao Wang,Xiaojun Zhang,Wei Gong,Zhaojun Yu,Yu Sun. Examining Product Reviews with Sentiment Analysis and Opinion Mining[J]. 数据分析与知识发现, 2017, 1(12): 1-9.
[13] Zhu Ling,Xue Chunxiang,Zhang Chengzhi,Fu Zhu. User Tags and Microblog Posts: Case Study of Sina Weibo[J]. 现代图书情报技术, 2016, 32(3): 18-24.
[14] Zhang Yongyun, Zhang Shengtai. Star Effect and Broker Effect in Social Media Knowledge Collaboration Network: Discovery from Wikipedia Social Media[J]. 现代图书情报技术, 2015, 31(4): 72-78.
[15] Wang Zhongqun, Jiang Sheng, Xiu Yu, Huang Subin, Wang Qiansong. Information Resource Recommendation Method Based on Dynamic Tag-Resource Network[J]. 现代图书情报技术, 2015, 31(3): 49-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938