Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (4): 20-26    DOI: 10.11925/infotech.1003-3513.2014.04.04
Current Issue | Archive | Adv Search |
Literature Recommendation Using Evolution Patterns
Wei Meng1,2
1. School of Information Management, Wuhan University, Wuhan 430072, China;
2. Air Force Engineering University Library, Xi'an 710051, China
Download: PDF(544 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] To help users retrieve and read the literature of one topic from the shallower to the deeper. [Context] Literature recommendation service is one of the core businesses in digital library, and it plays an important role in literature searching and querying for the readers. [Methods] This paper introduces a user searching behaviour Common evolution pAtterns based Literature retrievaL method (CALL for short). First, it extracts the features of literature, readers and retrieval logs, then it clusters the literature into n stages, further uses longest common subsequence method to mine the frequent article name sequences that are greater than the thresholds of length and frequency, finally it outputs the frequent subsequences from the above stage as the recommendation results. [Results] The author conducts extensive experiments on real literature and retrieval log datasets, and results demonstrate the accuracy, efficiency and scalability of the methods. And it can enrich the performance of recommendation of digital library. [Conclusions] The proposed methods can greatly enhance the efficiency of the existing literature recommendation systems, and make the direction of literature recommendation be diversified.

Key wordsEvolution pattern      Digital library      Literature recommendation     
Received: 20 October 2013      Published: 19 May 2014
:  TP393  

Cite this article:

Wei Meng. Literature Recommendation Using Evolution Patterns. New Technology of Library and Information Service, 2014, 30(4): 20-26.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2014.04.04     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2014/V30/I4/20

[1] 杨艳,李建中.数字图书馆中基于文献拓扑的个性化推荐技术[J].计算机研究与发展,2004,41(S):472-477.(Yang Yan,Li Jianzhong.Topology-based Paper Recommendation in Digital Library[J].Journal of Computer Research and Development,2004,41(S):472-477.)
[2] 陈祖琴,张惠玲,葛继科,等.基于加权关联规则挖掘的相关文献推荐[J].现代图书情报技术,2007(10):57-61.(Chen Zuqin,Zhang Huiling,Ge Jike,et al.Related Document Recommending Based on Weighted Association Rule Mining[J].New Technology of Library and Information Service,2007 (10):57-61.)
[3] 王磊.协同推荐技术及其在科技文献个性化推荐系统中的应用研究[D].南京:南京理工大学,2007.(Wang Lei.Collabo­rative Recommendation and Its Application in Personalized Recommendation System of Scientific Literatures[J].Nanjing:Nanjing University of Science and Technology,2007.)
[4] 陈青松.期刊网针对特定课题的文献推荐策略[J].图书情报知识,2009(6):70-74.(Chen Qingsong.Reference Reco­mmendation Strategy of Digital Resources Related to a Topic[J].Document,Information &Knowledge,2009(6):70-74.)
[5] 黄珍.基于数据挖掘的文献自动推荐研究[D].武汉:华中师范大学,2009.(Huang Zhen.Research of Reference Auto­matic Recommendation Based on Data Mining[D].Wuhan:Central China Normal University,2009.)
[6] 张琪,章颖华.情境感知的科技文献协同推荐方法研究[J].现代图书情报技术,2012(2):10-17.(Zhang Qi,Zhang Yinghua.Research on an Approach of Context Aware Collaborative Recommend for Scientific &Technical Literatures[J].New Technology of Library and Information Service,2012 (2):10-17.)
[7] 赖院根.科技文献跨语言推荐模型研究[J].中国图书馆学报,2012,38(2):70-77.(Lai Yuangen.Study on Cross-language Personalized Recommendation of Academic Literatures[J].Journal of Library Science in China,2012,38(2):70-77.)
[8] Li L,Wang D,Li T,et al.SCENE:A Scalable Two-Stage Personalized News Recommendation System[C].In:Procee­dings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR).2011:125-134.
[9] Abbar S,Amer-Yahia S,Indyk P.Real-Time Recommendation of Diverse Related Articles[C].In:Proceedings of the 22nd International World Wide Web Conference (WWW).2013:1-12.
[10] Zhou K,Yang S H,Zha H.Functional Matrix Factorizations for Cold-Start Recommendation[C].In:Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR).2011:315-324.
[11] Liu X,Aberer K.SoCo:A Social Network Aided Context-Aware Recommender System[C].In:Proceedings of the 22nd Interna­tional World Wide Web Conference (WWW).2013:781-802.
[12] Chen W,Hsu W,Lee M L.Making Recommendations from Multiple Domains[C].In:Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).2013:892-900.
[13] Niemann K,Wolpers M.A New Collaborative Filtering Approach for Increasing the Aggregate Diversity of Recomm­ender Systems[C].In:Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).2013:955-963.
[14] Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules in Large Databases[C].In:Proceedings of the 20th International Conference on Very Large Data Bases (VLDB).1994:487-499.
[15] Han J,Pei J,Yin Y.Mining Frequent Patterns without Candidate Generation[C].In:Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD).2000:1-12.
[16] Hirschberg D S.Algorithms for the Longest Common Subsequence Problem[J].Journal of the ACM (JACM),1977,24(4):664-675.
[17] 最长公共子序列[EB/OL].[2013-12-18].http://blog.csdn.net/yysdsyl/article/details/4226630.(LCS[EB/OL].[2013-12-18].http://blog.csdn.net/yysdsyl/article/details/4226630.)
[18] ICTCLAS4j分词系统[EB/OL].[2013-12-18].https://code.google.com/p/ictclas4j/.(ictclas4j[EB/OL].[2013-12-18].https://code.google.com/p/ictclas4j/.)

[1] Yunfei Qi,Yuxiang Zhao,Qinghua Zhu. Linked Data for Mobile Visual Search System of Digital Library[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[2] Hong Liang,Qian Chen,Fan Xing. Context-aware Recommendation System for Mobile Digital Libraries[J]. 现代图书情报技术, 2016, 32(7-8): 110-119.
[3] Liu Jian,Bi Qiang,Ma Zhuo. Assessment of Digital Library’s Micro-services: An Empirical Study[J]. 现代图书情报技术, 2016, 32(5): 22-29.
[4] Chen Guo, Hu Changping. Research on the Structural Features of Keyword Network of Scientific Research Areas:An Empirical Study of LIS[J]. 现代图书情报技术, 2014, 30(7): 84-91.
[5] Xiong Yongjun, Yuan Xiaoyi. Design and Implementation of Automatic Monitoring System about Library Document Database Running State[J]. 现代图书情报技术, 2014, 30(7): 127-132.
[6] Wang Chuanqing, Bi Qiang. System Model of Digital Library Automatic Semantic Annotation Tool[J]. 现代图书情报技术, 2014, 30(6): 17-24.
[7] Hu Changping, Chen Guo. A New Feature Selection Method Based on Term Contribution in Co-word Analysis[J]. 现代图书情报技术, 2013, 29(7/8): 89-93.
[8] Wang Zhongyi, Xia Lixin, Shi Yijin, Zheng Senmao. The Creation and Publishing of Middle Linked Data in Digital Library[J]. 现代图书情报技术, 2013, (5): 28-33.
[9] Liu Wei, Xia Cuijuan, Zhang Chunjing. Big Data and Linked Data: The Emerging Data Technology for the Future of Librarianship[J]. 现代图书情报技术, 2013, (4): 2-9.
[10] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
[11] Chen Junjie, Huang Guofan. Construction Strategy and Main Technology of the Mobile Library APP——Take iOS for Instance[J]. 现代图书情报技术, 2012, (9): 75-80.
[12] Dong Li, Zeng Ting, Chen Wu, Jiang Airong. A Review of ICADL 2011[J]. 现代图书情报技术, 2012, 28(7): 33-39.
[13] Qiao Jianzhong. Statistical Characteristics Based Web Page Relevance Judgment Strategy for the “Type” Topics Crawled[J]. 现代图书情报技术, 2012, 28(6): 9-16.
[14] Liu Jiantao. Implement of Translation and Interpretation Bookmarklet in Library Based on Cloud Service[J]. 现代图书情报技术, 2012, 28(6): 84-88.
[15] Qian Li, Zhang Zhixiong, Zou Yimin, Huang Yongwen. Application of Information Visualization Retrieval in Digital Library[J]. 现代图书情报技术, 2012, 28(4): 74-78.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn