Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (4): 92-98    DOI: 10.11925/infotech.1003-3513.2014.04.14
Current Issue | Archive | Adv Search |
The Research of Products Evaluation Using Microblogging Data with “Android System” Evaluation as an Example
Li Bing, Xu Weijia, Zhang Jingxuan
School of Information Technology & Management, University of International Business and Economics, Beijing 100029, China
Download: PDF(777 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] Analyze the existing product evaluation models of electronic commerce, find their shortages, and propose a new model to improve these shortages. [Methods] Collect 1 687 microblogging data on a product from the largest microblogging platform in China. Analyze and build modeling on the sample data sets by text sentimental classification. [Results] Analyzing the microblogging data on a product and summarizing their inherent semantic information. The research find that they can be used to evaluate product characterisics. And these data is generated with spontaneous, so the results of the analysis are more objective. [Limitations] Analysis of a larger sample of data is not fully involved, also the evaluation of products based on dynamic microblogging data is not involved. [Conclusions] The analysis in the paper indicates that this model overcomes the weakness of original ones to a certain extent; accordingly, it attracts more companies' attention on microblogging product evaluation information.

Key wordsMicroblogging      Sentiment analysis      Crowdsourcing      Product evaluation     
Received: 23 October 2013      Published: 19 May 2014
:  TP391  

Cite this article:

Li Bing, Xu Weijia, Zhang Jingxuan. The Research of Products Evaluation Using Microblogging Data with “Android System” Evaluation as an Example. New Technology of Library and Information Service, 2014, 30(4): 92-98.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2014.04.14     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2014/V30/I4/92

[1] 平亮,宗利永.基于社会网络中心性分析的微博信息传播研究——以Sina 微博为例[J].图书情报知识,2010(6):92-97.(Ping Liang,Zong Liyong.Research on Microblog Information Dissemination Based on SNA Centrality Analysis——A Case Study with Sina Microblog[J].Document,Information &Knowledge,2010(6) :92-97.)
[2] 杨璟.京东商城:自主经营式B2C的"领头狼"[J].创新时代,2011(8):40-42.(Yang Jing.Jingdong Mall:The Alpha of Independent Type[J].Innovation Time,2011(8):40-42.)
[3] 王静一.从淘宝网的竞争策略看C2C市场发展[J].商业时代,2006(14):70,78.(Wang Jingyi.The Analysis of C2C Market Future Development Based on the Competitive Strategy of Taobao[J].Commercial Times,2006(14):70,78.)
[4] 李维安,吴德胜,徐皓.网上交易中的声誉机制——来自淘宝网的证据[J].南开管理评论,2007,10(5):36-46.(Li Weian,Wu Desheng,Xu Hao.Reputation in China's Online Auction Market:Evidence from the Taobao Website[J].Nankai Business Review,2007,10(5):36-46.)
[5] Kotha S,Basu S.Amazon and eBay:Online Retailers as Market Makers[A].//The Market Makers:How Retailers are Reshaping the Global Economy[M].Oxford University Press,2011:155-177.
[6] 吕秀莹.浅析Web2.0环境下我国第三方点评网站的发展现状——以大众点评网和豆瓣网为例[J].东南大学学报:哲学社会科学版,2011,13(S1):87-92.(Lv Xiuying.A Basic Analysis of Development of Domestic Third Party Review Site in the Web 2.0——Based on Dianping and Douban Website[J].Journal of Southwest University:Philosophy and Social Science,2011,13(S1):87-92.)
[7] 谭婷婷,蔡淑琴,胡慕海.众包国外研究现状[J].武汉理工大学学报:信息与管理工程版,2011,33(2):263-266.(Tan Tingting,Cai Shuqin,Hu Muhai.Foreign Research Status of Crowdsourcing[J].Journal of Wuhan University of Technology:Information &Management Engineering,2011,33(2):263-266.)
[8] 张利斌,钟复平,涂慧.众包问题研究综述[J].科技进步与对策,2012,29(6):154-160.(Zhang Libin,Zhong Fuping,Tu Hui.A Research Review on Crowdsourcing[J].Science and Technology Progress and Policy,2012,29(6):154-160.)
[9] Pfeffer J,Zorbach T,Carley K M.Understanding Online Firestorms:Negative Word-of-Mouth Dynamics in Social Media Networks[J].Journal of Marketing Communications,2014,20 (1-2):117-128.
[10] Blazevic V,Hammedi W,Garnefeld I,et al.Beyond Traditional Word-of-Mouth:An Expanded Model of Customer-driven Influence[J].Journal of Service Management,2013,24(3):294-313.
[11] Meuter M L,McCabe D B,Curran J M.Electronic Word-of-Mouth Versus Interpersonal Word-of-Mouth:Are All Forms of Word-of-Mouth Equally Influential?[J].Services Marketing Quarterly,2013,34(3):240-256.
[12] Alexandrov A,Lilly B,Babakus E.The Effects of Social-and Self-motives on the Intentions to Share Positive and Negative Word of Mouth[J].Journal of the Academy of Marketing Science,2013,41(5):531-546.

[1] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[2] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[3] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[4] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[5] Cheng Zhou,Hongqin Wei. Identifying Crowd Participants with Modified Random Forests Algorithm[J]. 数据分析与知识发现, 2018, 2(7): 46-54.
[6] Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[7] Tingting Zhang,Yuxiang Zhao,Qinghua Zhu. Mining User Preferences in Crowdsourcing Community with Sensitivity Analysis[J]. 数据分析与知识发现, 2018, 2(5): 23-31.
[8] Sinan Yang,Jian Xu,Pingping Ye. Review of Online Sentiment Visualization Techniques[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[9] Tingting Wang,Kaiping Wang,Guijie Qi. Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
[10] Yang Zhao,Qiqi Li,Yuhan Chen,Wenhang Cao. Examining Consumer Reviews of Overseas Shopping APP with Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(11): 19-27.
[11] Yue He,Can Zhu. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[12] Hongli Zhang,Jiying Liu,Sinan Yang,Jian Xu. Predicting Online Users’ Ratings with Comments[J]. 数据分析与知识发现, 2017, 1(8): 48-58.
[13] Ge Gao,Junmei Luo,Yu Wang. Analyzing Textual Sentiment Based on HNC Theory[J]. 数据分析与知识发现, 2017, 1(8): 85-91.
[14] Huanrong Shou,Shuqing Deng,Jian Xu. Detecting Online Rumors with Sentiment Analysis[J]. 数据分析与知识发现, 2017, 1(7): 44-51.
[15] Chuanming Yu,Bolin Feng,Lu An. Sentiment Analysis in Cross-Domain Environment with Deep Representative Learning[J]. 数据分析与知识发现, 2017, 1(7): 73-81.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn