Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (5): 58-65    DOI: 10.11925/infotech.1003-3513.2014.05.08
INFORMATION ANALYSIS AND RESEARCH Current Issue | Archive | Adv Search |
The Research of Conformity Model Between Sellers Description and Buyers Comments
Wang Qianqian, Yuan Qinjian
School of Information Management, Nanjing University, Nanjing 210093, China
Download: PDF(1328 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This study discusses wheather commodity characteristics described by sellers are consistent with comments or not, by building the conformity model between description of sellers and comments of buyers. [Methods] Study the text of description and comments, extract the key attributes of products and determine polarity of emotional words, then select three Taobao shops to evaluate the model. [Results] The result shows that there are higher consistent degrees in B shop, A shop is the second, C shop is the worst. There are two attributes “in line” and “authentic” in C shop, which are not consistent with the comments. [Limitations] All the information from sellers and customers are not contained, such as title and picture information of products, and the photo information from customers. [Conclutions] The results can tell which attributes are consistent with the sellers description and how much they match. This result can support consumer’s decisions more effectively.

Key wordsText mining      Key properties      Emotional analysis      Consistent degree calculation     
Received: 03 January 2014      Published: 06 June 2014
:  F224  

Cite this article:

Wang Qianqian, Yuan Qinjian. The Research of Conformity Model Between Sellers Description and Buyers Comments. New Technology of Library and Information Service, 2014, 30(5): 58-65.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2014.05.08     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2014/V30/I5/58

[1] 张红斌, 李广丽. 商品在线评价的情感倾向性分析研究[J]. 现代图书情报技术, 2012(10): 61-66. (Zhang Hongbin, Li Guangli. Research on Sentiment Orientation Analysis of Product Online Reviews[J]. New Technology of Library and Information Service, 2012(10):61-66.)
[2] 杨铭, 祁巍, 闫相斌, 等.在线商品评论的效用分析研究[J].管理科学学报, 2012, 15(5): 65-75. (Yang Ming, Qi Wei, Yan Xiangbin, et al. Utility Analysis for Online Product Review [J]. Journal of Management Sciences in China, 2012, 15(5): 65-75.)
[3] 郝媛媛, 叶强, 李一军. 基于影评数据的在线评论有用性影响因素研究[J]. 管理科学学报, 2010, 13(8):78-88.( Hao Yuanyuan, Ye Qiang, Li Yijun. Research on Online Impact Factors of Customer Reviews Usefulness Based on Movie Reviews Data[J]. Journal of Management Sciences in China, 2010, 13(8): 78-88.)
[4] Chen C C, Tseng Y.Quality Evaluation of Product Reviews Using an Information Quality Framework[J]. Decision Support Systems, 2011, 50(4): 755-768.
[5] Chklovski T. Deriving Quantitative Overviews of Free Text Assessments on the Web[C]. In: Proceedings of the 11th International Conference on Intelligent User Interfaces (IUI'06). New York: ACM, 2006: 155-162.
[6] 李志宇. 在线商品评论效用排序模型研究[J]. 现代图书情报技术, 2013(4): 62-68. (Li Zhiyu. Study on the Reviews Effectiveness Sequencing Model of Online Products[J]. New Technology of Library and Information Service, 2013 (4): 62-68.)
[7] Kobayashi N, Inui K, Matsumoto Y, et al. Collecting Evaluative Expressions for Opinion Extraction[C]. In: Procee-dings of the 1st International Joint Conference on Natural Language Processing (IJCNLP'04). Berlin, Heidelberg: Springer-Verlag, 2004: 596-605.
[8] Popescu A, Etzioni O. Extracting Product Features and Opinions from Reviews[C]. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT'05). Stroudsburg: Association for Computational Linguistics, 2005: 339-346.
[9] Miao Q, Li Q, Dai R. Amazing: A Sentiment Mining and Retrieval System[J]. Expert Systems with Applications, 2009, 36(3): 7192-7198.
[10] 伍星, 何中市, 黄永文. 产品评论挖掘研究综述[J]. 计算机工程与应用, 2008, 44(36): 37-41. (Wu Xing, He Zhongshi, Huang Yongwen. Product Review Mining: A Survey[J]. Computer Engineering and Applications, 2008, 44(36): 37-41.)
[11] Liu B, Hu M, Cheng J. Opinion Observer: Analyzing and Comparing Opinions on the Web [C]. In: Proceedings of the 14th International World Wide Web Conference (WWW'05). New York: ACM, 2005: 342-351.
[12] Pang B, Lee L. Opinion Mining and Sentiment Analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2(1-2): 1-135.
[13] 陈江涛, 张金隆, 张亚军. 在线商品评论有用性影响因素研究: 基于文本语义视角[J]. 图书情报工作, 2012, 56 (10): 119-123. (Chen Jiangtao, Zhang Jinlong, Zhang Yajun. Impact Factors of Online Customer Reviews Usefulness: A Text Semantics Approach [J]. Library and Information Service, 2012, 56(10): 119-123.)
[14] GooSeeker. 网页抓取软件MetaSeeker[EB/OL]. [2013-03-05]. http://www.gooseeker.com/cn/node/product/metaseeker_ intro. (GooSeeker. Web Capture Software MetaSeeker [EB/ OL]. [2013-03-05]. http://www.gooseeker.com/cn/node/product/ metaseeker_intro.)
[15] 刘群, 张华平, 俞鸿魁, 等. 基于层叠隐马模型的汉语词法分析[J]. 计算机研究与发展, 2004, 41(8): 1421-1429.(Liu Qun, Zhang Huaping, Yu Hongkui, et al. Chinese Lexical Analysis Using Cascaded Hidden Markov Model[J]. Journal of Computer Research and Development, 2004, 41(8): 1421-1429.)
[16] 数据堂. 台湾大学NTUSD -简体中文情感极性词典[EB/OL]. [2013-03-05]. http://www.datatang.com/data/11837. (Data Tang. National Taiwan University-The Polarity of Simplified Chinese Emotional Dictionary [EB/OL]. [2013- 03-05]. http://www.datatang.com/data/11837.)
[17] Ye Q, Zhang Z, Law R.Sentiment Classification of Online Reviews to Travel Destinations by Supervised Machine Learning Approaches[J]. Expert Systems with Applications, 2009, 36(3): 6527-6535.

[1] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[2] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[3] Ning Zhang,Lemin Yin,Lifeng He. Impacts of “Poster-Follower” Sentiment on Stock Market Performance[J]. 数据分析与知识发现, 2018, 2(6): 1-12.
[4] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[5] Qiangbing Wang,Chengzhi Zhang. Constructing Users Profiles with Content and Gesture Behaviors[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[6] Xiufang Xie,Xiaolin Zhang. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[7] Yao Zhaoxu,Ma Jing. Extracting Topic and Opinion from Microblog Posts with New Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
[8] Lan Qiujun,Liu Wenxing,Li Weikang,Hu Xingye. Sentiment Analysis of Financial Forum Textual Message[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[9] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[10] Lin Yuanyuan,Zhan Hongfei,Yu Junhe,Li Changjiang,Zhang Fan. Using Product Reviews to Analyze Sentiment Fluctuation of Consumer[J]. 现代图书情报技术, 2016, 32(11): 44-53.
[11] Zhao Dongxiao,Wang Xiaoyue,Bai Rujiang,Liu Ziqiang. Semantic Text Mining Methodologies for Intelligence Analysis[J]. 现代图书情报技术, 2016, 32(10): 13-24.
[12] Sui Mingshuang,Cui Lei. Extracting Chemical and Disease Named Entities with Multiple-Feature CRF Model[J]. 现代图书情报技术, 2016, 32(10): 91-97.
[13] Ruyi Yang,Dongsu Liu,Hui Li. An Improved Topic Model Integrating Extra-Features[J]. 现代图书情报技术, 2016, 32(1): 48-54.
[14] Wang Ying, Wu Zhenxin, Xie Jing. Review on Semantic Retrieval System for Scientific Literature[J]. 现代图书情报技术, 2015, 31(5): 1-7.
[15] Hao Mei, Yang Xiaoyuan. Credibility Research on Chinese Online Customer Reviews[J]. 现代图书情报技术, 2015, 31(2): 55-63.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn