Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (7): 41-47    DOI: 10.11925/infotech.1003-3513.2014.07.06
Current Issue | Archive | Adv Search |
Study on Keyword Extraction with LDA and TextRank Combination
Gu Yijun1, Xia Tian2,3
1. Schools of Cyber Security, People's Public Security University of China, Beijing 100038, China;
2. Key Laboratory of Data Engineering and Knowledge Engineering, MOE, Renmin University of China, Beijing 100872, China;
3. School of Information Resource Management, Renmin University of China, Beijing 100872, China
Download: PDF(515 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] Realize keyword extraction through the merger of the internal structure information of single document and the topic information among documents.[Methods] LDA is used for topic modeling and influence calculation of candidate keywords, then, the Text Rank algorithm is improved and the importance of the candidate words is uneven transferred by topic influences and word adjacency relations. Furthermore, the probability transition matrix for iterative calculation is built and used to extract keywords.[Results] The effective combination of LDA and Text Rank is achieved, and the keyword extraction results are improved significantly when the data set presents strong topic distribution.[Limitations] High-cost multi-document topic analysis is required for combination method.[Conclusions] Document keywords are associated with document itself and the related documents collection,combination of these two aspects is an effective way to improve the results of keyword extraction.

Key wordsKeyword extraction      LDA      Text Rank      Graph model     
Received: 07 February 2014      Published: 20 October 2014
:  TP393  

Cite this article:

Gu Yijun, Xia Tian. Study on Keyword Extraction with LDA and TextRank Combination. New Technology of Library and Information Service, 2014, 30(7): 41-47.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2014.07.06     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2014/V30/I7/41

[1] Mihalcea R, Tarau P. TextRank: Bringing Order into Texts[C]. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain. 2004: 404-411.
[2] 夏天. 词语位置加权TextRank的关键词抽取研究[J]. 现代图书情报技术, 2013(9): 30-34. (Xia Tian. Study on Keyword Extraction Using Word Position Weighted TextRank[J]. New Technology of Library and Information Service, 2013(9): 30-34.)
[3] Frank E, Paynter G W, Witten I H, et al. Domain-Specific Keyphrase Extraction[C]. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden. San Francisco: Morgan Kaufmann Publishers Inc., 1999: 668-673.
[4] Turney P D. Learning Algorithms for Keyphrase Extraction[J]. Information Retrieval, 2000, 2(4): 303-336.
[5] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[6] 石晶,李万龙. 基于LDA模型的主题词抽取方法[J]. 计算机工程, 2010, 36(19): 81-83. (Shi Jing, Li Wanlong. Topic Words Extraction Method Based on LDA Model[J]. Computer Engineering, 2010, 36(19): 81-83.)
[7] 刘俊, 邹东升, 邢欣来,等. 基于主题特征的关键词抽取[J]. 计算机应用研究, 2012, 29(11):4224-4227. (Liu Jun, Zou Dongsheng, Xing Xinlai, et al. Keyphrase Extraction Based on Topic Feature[J]. Application Research of Computers, 2012, 29(11): 4224-4227.)
[8] 刘知远. 基于文档主题结构的关键词抽取方法研究[D]. 北京: 清华大学, 2011. (Liu Zhiyuan. Research on Keyword Extraction Using Document Topical Structure[D]. Beijing: Tsinghua University, 2011.)
[9] Page L, Brin S, Motwani R, et al. The PageRank Citation Ranking: Bringing Order to the Web[R]. Stanford InfoLab, 1999.
[10] Kleinberg J M. Authoritative Sources in a Hyperlinked Environment[J]. Journal of the ACM, 1999, 46(5): 604-632.
[11] Litvak M, Last M. Graph-Based Keyword Extraction for Single-Document Summarization[C]. In: Proceedings of Workshop Multi-source Multilingual Information Extraction and Summarization (MMIES’08). Stroudsburg: Association for Computational Linguistics, 2008: 17-24.
[12] Steyvers M, Griffiths T. Probabilistic Topic Models[A].//Landauer T, McNamara S D, Kintsch W. Handbook of Latent Semantic Analysis: A Road to Meaning[M]. Lawrence Erlbaum, 2007: 424-440.
[13] 夏天. 中心网页中主题网页链接的自动抽取[J]. 山东大学学报: 理学版, 2012, 47(5): 25-31. (Xia Tian. Automatic Extracting Topic Page Links from Hub Page[J]. Journal of Shandong University: Natural Science, 2012, 47(5): 25-31.)
[14] 夏天. 基于扩展标记树的网页正文抽取[J]. 广西师范大学学报: 自然科学版, 2011, 29(1): 133-137. (Xia Tian. Content Extraction of Web Page Based on Extended Label Tree[J]. Journal of Guangxi Normal University: Natural Science Edition, 2011, 29(1): 133-137.)
[15] GitHub. ANSJ[EB/OL].[2014-03-05]. https://github.com/ansjsun/ansj_seg.
[16] Mallet. Topic Modeling[EB/OL].[2014-03-05]. http://mallet. cs.umass.edu/topics.php.
[17] Wang C, Zhang M, Ma S, et al. Automatic Online News Issue Construction in Web Environment[C]. In: Proceedings of the 17th International Conference on World Wide Web(WWW’08). New York: ACM, 2008: 457-466.

[1] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[3] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[4] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[5] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[6] Guijun Yang,Xue Xu,Fuqiang Zhao. Predicting User Ratings with XGBoost Algorithm[J]. 数据分析与知识发现, 2019, 3(1): 118-126.
[7] Yue He,Yue Feng,Shupeng Zhao,Yufeng Ma. Recommending Contents Based on Zhihu Q&A Community: Case Study of Logistics Topics[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[8] Tao Zhang,Haiqun Ma. Clustering Policy Texts Based on LDA Topic Model[J]. 数据分析与知识发现, 2018, 2(9): 59-65.
[9] Zhuchen Liu,Hao Chen,Yanhua Yu,Jie Li. Extracting Keywords with TextRank and Weighted Word Positions[J]. 数据分析与知识发现, 2018, 2(9): 74-79.
[10] Yanhua Xu,Yujie Miao,Lin Miao,Xueqiang Lv. Generating HSK Writing Essays with LDA Model[J]. 数据分析与知识发现, 2018, 2(9): 80-87.
[11] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[12] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[13] Li Wang,Lixue Zou,Xiwen Liu. Visualizing Document Correlation Based on LDA Model[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
[14] Jingqi Wang,Rui Li,Huayi Wu. The Evolution of Online Public Opinion Based on Spatial Autocorrelation[J]. 数据分析与知识发现, 2018, 2(2): 64-73.
[15] He Li,Linlin Zhu,Min Yan,Jincheng Liu,Chuang Hong. Identifying Useful Information from Open Innovation Community[J]. 数据分析与知识发现, 2018, 2(12): 12-22.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn