Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (7): 77-83    DOI: 10.11925/infotech.1003-3513.2014.07.11
Current Issue | Archive | Adv Search |
The Analysis of Credit Standing of E-businessman Based on the Data Mining of Users' Online Evaluation
Bi Dayu1,2, Xia Xiaoxu2, Wang Jing2
1. E-Commerce Research Center of Hubei Province, Central China Normal University, Wuhan 430079, China;
2. Information Management School, Central China Normal University, Wuhan 430079, China
Download: PDF(502 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This article discusses the credit of e-businessmen who used the third party e-business platform.[Methods] First, the weight of e-businessmen credit evaluation index system should be made clearly. Secondly, there views of customers are quantified by Chinese words segmentation technology and emotional word polarity identification method. Thirdly, the credit of e-businessmen is calculated with grey correlation analysis method.[Results]The degrees of membership of four levels, which include best, better, general and poor level are calculated. Then, it can be concluded the credit of e-businessman by using the result.[Conclusions] With the method of grey correlation analysis in the situation of incomplete information and small sample, the authors can formulate a reasonable method of evaluating the credit of e-businessman using the review of customers. This method can quantify the contents in arelatively unified standard, and acquire the distribution of different evaluation.

Key wordsOnline evaluation      E-businessman credit standing      Evaluation index system      Grey correlation analysis     
Received: 23 January 2014      Published: 20 October 2014
:  G350  

Cite this article:

Bi Dayu, Xia Xiaoxu, Wang Jing. The Analysis of Credit Standing of E-businessman Based on the Data Mining of Users' Online Evaluation. New Technology of Library and Information Service, 2014, 30(7): 77-83.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2014.07.11     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2014/V30/I7/77

[1] 王学东, 安楠, 崔志恒, 等. 网商信用指数测度研究——基于改进的AHP法[J]. 现代情报, 2013, 33(9): 4-9. (Wang Xuedong, An Nan, Cui Zhiheng, et al. Credit Index Measurement of E-traders——Improved AHP Method[J]. Journal of Modern Information, 2013, 33(9): 4-9.)
[2] Corritore C L, Kracher B, Wiedenbeck S. On-line Trust: Concepts, Evolving Themes, a Model[J]. International Journal of Human-Computer Studies, 2003, 58(6): 737-758.
[3] Awad N F, Ragowsky A. Establishing Trust in Electronic Commerce Through Online Word of Mouth: An Examination Across Genders[J]. Journal of Management Information Systems, 2008, 24(2): 101-121.
[4] 李志宇. 在线商品评论效用排序模型研究[J]. 现代图书情报技术, 2013(4): 62-68. (Li Zhiyu. Study on the Reviews Effectiveness Sequencing Model of Online Products[J]. New Technology of Library and Information Service, 2013(4): 62-68.)
[5] 李霄, 丁晟春. 垃圾商品评论信息的识别研究[J]. 现代图书情报技术, 2013(1): 63-68. (Li Xiao, Ding Shengchun. Research on Reviews Spam Recognition[J]. New Technology of Library and Information Service, 2013(1): 63-68.)
[6] 唐晓波, 肖璐. 基于情感分析的评论挖掘模型研究[J]. 情报理论与实践, 2013, 36(7): 100-105. (Tang Xiaobo, Xiao Lu. Research on the Review Mining Model Based on SentimentAnalysis[J]. Information Studies: Theory & Application, 2013, 36(7): 100-105.)
[7] 语言技术平台[EB/OL].[2013-10-16]. http://ir.hit.edu.cn/demo/ltp/.(Language Technology Platform[EB/OL].[2013- 10-16]. http://ir.hit.edu.cn/demo/ltp/.)
[8] 《知网》情感分析词语集[EB/OL].[2013-10-16]. http://www.keenage.com/html/c_index.html. (HowNet[EB/OL].[2013-10-16].http://www.keenage.com/html/c_index.html.)
[9] 台湾大学NTUSD-简体中文极性情感词典[EB/OL].[2013- 10-16]. http://www.datatang.com/data/11837. (NTUSD[EB/OL].[2013-10-16]. http://www.datatang.com/data/11837.)
[10] 邓聚龙. 灰理论基础[M] .武汉: 华中科技大学出版社, 2002. (Deng Julong. The Grey Theory[M]. Wuhan: Huazhong University of Science & Technology Press, 2002.)
[11] 邓聚龙. 灰理论的基本方法[M] .武汉: 华中科技大学出版社, 2004. (Deng Julong. The Method of Grey Theory[M]. Wuhan: Huazhong University of Science & Technology Press, 2004.)
[12] 崔杰. 灰色不确定系统建模的理论与方法研究[D]. 南京: 南京航空航天大学, 2010. (Cui Jie. Study on the Theories and Methods of Modeling for Grey Uncertain Systems[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.)
[13] 潘勇, 孔栋. 电子商务网站可信度评价模型[J]. 情报杂志, 2007, 26(7): 81-87. (Pan Yong, Kong Dong. A Research on Estimation of Credible Degree of Electric Commerce Web- site[J]. Journal of Intelligence, 2007, 26(7): 81-87. )
[14] 刘思峰. 灰色系统理论及应用[M]. 北京: 科学出版社, 2010. (Liu Sifeng. The Theory and Application of Grey System[M]. Beijing: Science Press, 2010.)

[1] Ming Yi,Tingting Zhang. Ranking Answer Quality of Popular Q&A Community[J]. 数据分析与知识发现, 2019, 3(6): 12-20.
[2] Xiang Li,Xiaodong Qian. Research on Impact of Commodity Online Evaluation for Consumption Convergence[J]. 数据分析与知识发现, 2019, 3(3): 102-111.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn