Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (7): 92-100    DOI: 10.11925/infotech.1003-3513.2014.07.13
Current Issue | Archive | Adv Search |
Research on Online "Water Army" Detection Methods
Wang Shuo1, Xu Jian1, Liu Ying2
1. School of Information Management, Sun Yat-Sen University, Guangzhou 510006, China;
2. Sun Yat-Sen University Libraries, Guangzhou 510275, China
Download: PDF(900 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

[Objective] The online "water army" causes the distortion of network information. The paper proposes two methods to detect water army.[Context] Use the methods to detect the "water army" existed on movie website,e-commerce website and so on.[Methods] The paper proposes static and dynamic methods to detect water army, and designs an intensity index to show the fluctuations of the number of reviews relative to the overall in one day.[Results]The paper uses mining technology to collect rating data of Douban movie site, then analyses the ratings to identify the"water army", which verifies the effectiveness of two detection methods.[Conclusions] The combination of the static and dynamic detection methods can detect the existence of "water army" phenomenon effectively. But it also has some limitations, for example, the insufficient rating data affects the detection.

Key wordsNetwork information authenticity      "Water Army"      detection      Normality fitting      Time fragment analysis      "Water Army"      strength     
Received: 31 December 2013      Published: 20 October 2014
:  G250  

Cite this article:

Wang Shuo, Xu Jian, Liu Ying. Research on Online "Water Army" Detection Methods. New Technology of Library and Information Service, 2014, 30(7): 92-100.

URL:     OR

[1] 百度百科. “水军”现象[EB/OL].[2013-10-25]. http://baike. Phenomenon of Water Army[EB/OL].[2013-10-25].
[2] 新华网.三星“水军”营销遭曝光: 诋毁对手被罚千万台币[EB/OL].[2013-10-28]. (XinhuaNet. Water Army
Marketing of Samsung is Exposed: Discredit Opponents Lead to be Fined Ten Million NT Dollars[EB/OL].[2013-10-28].
[3] 王淑敏, 李军豪. 蜜罐技术在社交网络反垃圾信息中应用[J]. 煤炭技术, 2011, 30(7): 154-155. (Wang Shumin, Li Junhao. Honeypot Technology Applicationin Social Networks of SPAM[J]. Coal Technology, 2011, 30(7): 154-155.)
[4] 隆承志, 周杰. 基于特征共享的垃圾邮件过滤方法[C]. 见: 2010年基于互联网的商业管理学术会议论文集. 2010. (Long Chengzhi, Zhou Jie. Characteristics Sharing Based Spam Filtering Method[C]. In: Proceedings of the Conference on Web Based Business Management.2010.)
[5] Chen C C, Tseng Y. Quality Evaluation of Product Reviews Using an Information Quality Framework[J]. Decision Support Systems, 2011, 50(4): 755-768.
[6] Liu Y, Jin J, Ji P, et al. Identifying Helpful Online Reviews: A Product Designer’s Perspective[J]. Computer-Aided Design, 2013, 45(2): 180-194.
[7] 苏雪佳. B2C在线评论有用性影响因素研究——以亚马逊网站为例[D]. 武汉: 中南民族大学, 2012. (Su Xuejia. A Study of the Impact Factors of the Helpfulness of B2C Online Reviews —— A Case Study of Amazon[D]. Wuhan: South- Central University for Nationalities, 2012.)
[8] 江海洋. 基于评论挖掘和用户偏好学习的评分预测协同过滤[J]. 计算机应用研究, 2010, 27(12): 4430-4432. (Jiang Haiyang. Collaborative Filtering Based on Opinion Mining and User Preference Learning[J]. Application Research of Computers, 2010, 27(12): 4430-4432.)
[9] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 第三版. 北京: 高等教育出版社, 2001. (Sheng Zhou, Xie Shiqian, Pan Chengyi. Probability Theory and Mathematical Statistics[M]. The 3rd Edition. Beijing: Higher Education Press, 2001.)
[10] 查先进. 信息分析[M].武汉: 武汉大学出版社, 2011. (Zha Xianjin. Information Analysis[M]. Wuhan: Wuhan University Press, 2011.)

[1] Jiaming Liang,Jie Zhao,Zhou Jianlong,Zhenning Dong. Detecting Collusive Fraudulent Online Transaction with Implicit User Behaviors[J]. 数据分析与知识发现, 2019, 3(5): 125-138.
[2] Lulu Xu,Xiaoyue Wang,Rujiang Bai,Yanting Zhou. Detecting Emerging Trends of Funds Based on DTM Model and Text Analytics: Case Study of NSF Graphene Field[J]. 数据分析与知识发现, 2018, 2(3): 87-97.
[3] Xiaohua Shi,Hongtao Lu. Detecting Community in Scientific Collaboration Network with Bayesian Symmetric NMF[J]. 数据分析与知识发现, 2017, 1(9): 49-56.
[4] Hongli Zhang,Jiying Liu,Sinan Yang,Jian Xu. Predicting Online Users’ Ratings with Comments[J]. 数据分析与知识发现, 2017, 1(8): 48-58.
[5] Huanrong Shou,Shuqing Deng,Jian Xu. Detecting Online Rumors with Sentiment Analysis[J]. 数据分析与知识发现, 2017, 1(7): 44-51.
[6] Xiaofei Fang,Xiaoxi Huang,Rongbo Wang,Zhiqun Chen,Xiaohua Wang. Identifying Hot Topics from Mobile Complaint Texts[J]. 数据分析与知识发现, 2017, 1(2): 19-27.
[7] Dongsheng Zhai,Wenhao Cai,Jie Zhang,Zhenfei Li. An Improved Method of Semantic Similarity Calculation of Chinese Trademarks[J]. 数据分析与知识发现, 2017, 1(11): 19-28.
[8] Ding Shengchun,Gong Silan,Li Hongmei. A New Method to Detect Bursty Events from Micro-blog Posts Based on Bursty Topic Words and Agglomerative Hierarchical Clustering Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 12-20.
[9] Wang Xiaomei,Deng Qiping. Auto-Identifying Research Area Groups in Science Map[J]. 现代图书情报技术, 2016, 32(4): 48-55.
[10] Li Jinhua,An Zhongjie. Analyzing Geographical Coordinates Data for Micro-blog Trending Events[J]. 现代图书情报技术, 2016, 32(2): 90-101.
[11] Zhang Xiaoyong,Zhou Qingqing,Zhang Chengzhi. Identifying Food Topics from User-Generated Contents in Microblogs[J]. 现代图书情报技术, 2016, 32(10): 70-80.
[12] Zhai Dongsheng,Guo Cheng,Zhang Jie,Li Dengjie. Identifying Technology Opportunities with Anomaly Detection Technique[J]. 现代图书情报技术, 2016, 32(10): 81-90.
[13] Liu Huoyu, Wang Dongbo. Research and Implementation of Data Preprocessing Oriented to Paper Similarity Detection[J]. 现代图书情报技术, 2015, 31(5): 50-56.
[14] Wu Ni, Zhao Pengwei, Qin Chunxiu. Microblog Hotspot Detection Based on Semantic Analysis and Similarity Strength[J]. 现代图书情报技术, 2015, 31(5): 57-64.
[15] Liu Haoxia, Peng Shanglian. A Community Detection Algorithm via Neighborhood Node Influence Based Label Propagation[J]. 现代图书情报技术, 2015, 31(4): 58-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938