Please wait a minute...
New Technology of Library and Information Service  2014, Vol. 30 Issue (12): 92-96    DOI: 10.11925/infotech.1003-3513.2014.12.12
Current Issue | Archive | Adv Search |
Research on Correspondence Between Keyword and Chinese Library Classification Based on Latent Semantic Analysis
Xia Dong1, Xiao Xiaodan1, Li Guolei1, Chen Xianlai1,2
1. Xiangya School of Medicine, Central South University, Changsha 410013 China;
2. Key Laboratory of Medical Information Research, Central South University, Changsha 410013, China
Download: PDF(396 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper attempts to explore the relationship between keyword and Chinese Library Classification for building a foundation for the comparison system. [Context] To help the authors unfamiliar with CLC make indexing and to assist users to complete more precise retrieval through combining keywords with related CLC. [Methods] Through decompositing constructed Keywords-CLC matrix with SVD (Singular Value Decom­position), A three-dimensional semantic coordinates between keywords and CLC is obtained. Then, according to vector representation of a query and the CLC coordinates, the correspondence is calculated and sorted in descending order. [Results] Comparing with single, three or more keywords, the correspondence accuracy between two keywords and CLC achieved better results. Among 100 phrases containing two keywords, 91 phrases are able to determine at least one associated CLC, the accuracy rate reaches 91%. [Conclusions] The correspondence effect between the phrases of two key words and single CLC is positive and lays a good foundation for the construction of the comparison system.

Key wordsLatent semantic analysis      Keyword      Chinese Library Classification      Correspondence relation     
Received: 03 July 2014      Published: 20 January 2015
:  G254  

Cite this article:

Xia Dong, Xiao Xiaodan, Li Guolei, Chen Xianlai. Research on Correspondence Between Keyword and Chinese Library Classification Based on Latent Semantic Analysis. New Technology of Library and Information Service, 2014, 30(12): 92-96.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2014.12.12     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2014/V30/I12/92

[1] 钟伟, 马骏, 边莉, 等. 医学科研论文中图分类号标引的探讨 [J]. 中国医疗前沿, 2009, 4(19): 122-123. (Zhong Wei, Ma Jun, Bian Li, et al. Indexing of CLC Number in Medical Papers [J]. China Healthcare Innovation, 2009, 4(19): 122-123.)
[2] 吴锦雅, 陈望忠, 王征爱. 关于中图分类号在科技期刊论文中应用的商榷[J]. 编辑学报, 2008, 20(6): 549-550. (Wu Jinya, Chen Wangzhong, Wang Zheng'ai. On Application of Chinese Book Classification Number in Sci-tech Papers [J]. Acta Editologica, 2008, 20(6): 549-550.)
[3] 张晓丽. 科技论文中图分类号标引现状分析及规范化建议[J]. 科技与出版, 2012(9): 120-121. (Zhang Xiaoli. CLC Indexing Status Analysis of Scientific Papers and Standardized Proposal [J]. Science Technology and Publication, 2012(9): 120-121.)
[4] 杨贺, 杨奕虹, 李宁. 关键词-分类号关联词表构建[J].现代图书情报技术, 2013(7-8): 107-113. (Yang He, Yang Yihong, Li Ning. Construction of Keywords-Chinese Library Classification Codes Integrated Thesaurus [J]. New Technology of Library and Information Service, 2013(7-8): 107-113.)
[5] 陈先来, 肖晓旦, 杜方冬. 基于互信息构建关键词-叙词对照表的研究[J]. 情报理论与实践, 2006, 29(5): 567-569. (Chen Xianlai, Xiao Xiaodan, Du Fangdong. Research on Keyword-Descriptor Comparison Table Construction Based on Mutual Information [J]. Information Studies: Theory & Application, 2006, 29(5): 567-569.)
[6] 朱伟丽, 韩宇, 肖晓旦, 等. 医学关键词与叙词对照表自动构建研究[J]. 现代图书情报技术, 2006(8): 51-54. (Zhu Weili, Han Yu, Xiao Xiaodan. Study of Automatic Construction of Medicine Keyword-Descriptor Comparison List [J]. New Technology of Library and Information Service, 2006(8): 51-54.)
[7] 李国垒, 陈先来. 潜在语义分析在关键词-叙词对照系统构建中的应用[J]. 情报理论与实践, 2014, 37(4): 127-133. (Li Guolei, Chen Xianlai. The Application of Latent Semantic Analysis to Construction of Keyword-Descriptor Comparison System [J]. Information Studies: Theory & Application, 2014, 37(4): 127-133.)
[8] 钟伟金. 基于共现模式的分类号-关键词对应关系研究[J]. 情报理论与实践, 2013, 36(5): 116-119. (Zhong Weijin. Research on CLC-Keyword Corresponding Relationship Based on Co-occurrence Patterns [J]. Information Studies: Theory & Application, 2013, 36(5): 116-119.)
[9] 中国生物医学文献服务系统 [DB/OL]. [2014-03-27]. http:// www.sinomed.ac.cn. (SinoMed [DB/OL]. [2014-03-27]. http:// www.sinomed.ac.cn.)
[10] 杨翠. 潜在语义分析理论及其在文本检索与聚类中的应用研究 [D]. 上海: 上海大学, 2008. (Yang Cui. Latent Semantic Analysis Theory and Its Application in Text Retrieval and Clustering [D]. Shanghai: Shanghai University, 2008.)
[11] 何志林, 王春红. 矩阵奇异值分解在隐含语义信息检索中的应用[J]. 现代计算机:下半月版, 2011(6): 21-23. (He Zhilin, Wang Chunhong. Application of Matrix Singular Value Decomposition (SVD) in Latent Semantic Information Retrieval [J]. Modern Computer, 2011(6): 21-23.)

[1] Xiuxian Wen,Jian Xu. Research on Product Characteristics Extraction and Hedonic Price Based on User Comments[J]. 数据分析与知识发现, 2019, 3(7): 42-51.
[2] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[3] Zhen Zhang,Jin Zeng. Extracting Keywords from User Comments: Case Study of Meituan[J]. 数据分析与知识发现, 2019, 3(3): 36-44.
[4] Zhuchen Liu,Hao Chen,Yanhua Yu,Jie Li. Extracting Keywords with TextRank and Weighted Word Positions[J]. 数据分析与知识发现, 2018, 2(9): 74-79.
[5] Shihai Tian,Deli Lyu. An Early Warning Algorithm for Public Opinion of Safety Emergency[J]. 数据分析与知识发现, 2017, 1(2): 11-18.
[6] Tian Xia. Extracting Keywords with Modified TextRank Model[J]. 数据分析与知识发现, 2017, 1(2): 28-34.
[7] Ning Jianfei,Liu Jiangzhen. Using Word2vec with TextRank to Extract Keywords[J]. 现代图书情报技术, 2016, 32(6): 20-27.
[8] Zhao Yiping,Bi Qiang. Using Linked Data to Retrieve Similar Documents from the Academic Resource Websites[J]. 现代图书情报技术, 2016, 32(3): 41-49.
[9] Li Guolei, Chen Xianlai, Xia Dong, Yang Rong. Latent Semantic Analysis of Electronic Medical Record Text for Clinical Decision Making[J]. 数据分析与知识发现, 2016, 32(3): 50-57.
[10] Xu Deshan, Li Hui, Zhang Yunliang. A Method of Keywords Annotation Based on Linked Triples[J]. 现代图书情报技术, 2015, 31(9): 31-37.
[11] Wu Ni, Zhao Pengwei, Qin Chunxiu. Microblog Hotspot Detection Based on Semantic Analysis and Similarity Strength[J]. 现代图书情报技术, 2015, 31(5): 57-64.
[12] Li Junfeng, Lv Xueqiang, Zhou Shaojun. Patent Keyword Indexing Based on Weighted Complex Graph Model[J]. 现代图书情报技术, 2015, 31(3): 26-32.
[13] Li Xiangdong, Cao Huan, Ding Cong, Huang Li. Short-text Classification Based on HowNet and Domain Keyword Set Extension[J]. 现代图书情报技术, 2015, 31(2): 31-38.
[14] Zhang Yingyi, Zhang Chengzhi, Chi Xuehua, Li Lei. Difference Research on Keywords Tagging Behavior for Academic User Blog——A Case Study of ScienceNet.cn[J]. 现代图书情报技术, 2015, 31(10): 13-21.
[15] Zhang Aimin, Jia Junzhiz, Hao Qianqian. The Study on Automatic Mapping of Category Between Chinese Library Classification and DDC[J]. 现代图书情报技术, 2014, 30(7): 17-23.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn