Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (1): 59-65    DOI: 10.11925/infotech.1003-3513.2015.01.09
Current Issue | Archive | Adv Search |
Friend Recommendation in Social Network
Wu Hao, Liu Dongsu
School of Economics & Management, Xidian University, Xi'an 710126, China
Download: PDF(627 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] Make use of the friends and historical behavior of users in social network, to recommend potential friends for the target users. [Methods] The proportion of common friends and the proportion of interaction are used as indicators to measure the closeness of the relationship in a social network graph. The relationship between friends is scored according to sociality interest and interest similarity, and the Top-k users with the highest scores are recommended to the target users. [Results] Experimental results show that the precision rate and recall rate of this method are improved significantly in comparison with traditional methods. [Limitations] Abnormal interaction without identification and treatment, may affect the accuracy of the recommendation results. [Conclusions] Considering more factors, including the proportion of interaction, the improved friend recommendation method has a better effect than traditional single factor method.

Key wordsSocial network      Friend recommendation      Interest similarity      Interaction     
Received: 17 July 2014      Published: 12 February 2015
:  G354  

Cite this article:

Wu Hao, Liu Dongsu. Friend Recommendation in Social Network. New Technology of Library and Information Service, 2015, 31(1): 59-65.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2015.01.09     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2015/V31/I1/59

[1] 何静, 郭进利, 徐雪娟. 微博用户行为统计特性及其动力学分析[J]. 现代图书情报技术, 2013(7-8): 94-100. (He Jing, Guo Jinli, Xu Xuejuan. Analysis on Statistical Characteristic and Dynamics for User Behavior in Microblog Communities [J]. New Technology of Library and Information Service, 2013(7-8): 94-100.)
[2] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012. (Xiang Liang. Recommendation System Practice [M]. Beijing: Posts & Telecom Press, 2012.)
[3] Massa P, Bhattacharjee B. Using Trust in Recommender Systems: An Experimental Analysis [C]. In: Proceedings of the 2nd International Conference on Trust Management (iTrust 2004), Oxford, UK. Springer Berlin Heidelberg, 2004: 221-235.
[4] Lo S, Lin C. WMR-A Graph-Based Algorithm for Friend Recommendation [C]. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, Hong Kong, China. IEEE Computer Society, 2006.
[5] Chin A. Finding Cohesive Subgroups and Relevant Members in the Nokia Friend View Mobile Social Network [C]. In: Proceedings of International Conference on Computational Science and Engineering (CSE'09), Vancouver, BC, Canada. IEEE, 2009: 278-283.
[6] Shen D, Sun J T, Yang Q, et al. Latent Friend Mining from Blog Data [C]. In: Proceedings of the 6th International Conference on Data Mining (ICDM'06), Hong Kong, China. IEEE, 2006: 552-561.
[7] Zheng Y, Chen Y, Xie X, et al. GeoLife2.0: A Location-Based Social Networking Service [C]. In:Proceedings of the 10th International Conference on Mobile Data Management: Systems, Services and Middleware, Taipei, China. IEEE, 2009: 357-358.
[8] Bacon K, Dewan P. Towards Automatic Recommendation of Friend Lists [C]. In:Proceedings of the 5th International Conference on Collaborative Computing: Networking, Applications and Worksharing, Washington, DC, US. IEEE, 2009: 1-5.
[9] Wu Z, Jiang S, Huang Q. Friend Recommendation According to Appearances on Photos [C]. In: Proceedings of ACM International Conference on Multimedia, Beijing, China. ACM, 2009.
[10] 牛庆鹏. 博客潜在朋友推荐技术的研究[D]. 沈阳: 东北大学, 2009. (Niu Qingpeng. Research on Blog Friends Recommendation Mechanism in Blogsphere [D]. Shenyang: Northeastern University, 2009.)
[11] 于海群, 刘万军, 邱云飞. 基于用户偏好的社会网络二级人脉推荐研究[J]. 计算机应用与软件, 2012, 29(4): 39-43. (Yu Haiqun, Liu Wanjun, Qiu Yunfei. Second-level Contacts Recommendation of SNS Based on Users Preferences [J]. Computer Applications and Software, 2012, 29(4): 39-43.)
[12] 史岭峰. 基于社交网络好友关系的图查询算法研究与应用[D]. 南京: 南京理工大学, 2012. (Shi Lingfeng. Research and Application of Graph Query Algorithm Based on Friends Relationship in Social Network [D]. Nanjing: Nanjing University of Science & Technology, 2012.)
[13] 刘乾. 基于社交网络和地理位置信息的好友推荐方法研究[D]. 杭州: 浙江大学, 2013. (Liu Qian. Friend Recommendation Based on Social Network and Location Information [D]. Hangzhou: Zhejiang University, 2013.)
[14] 杨婷. 基于MapReduce的好友推荐系统的研究与实现[D]. 北京: 北京邮电大学, 2013. (Yang Ting. Research and Implementation of Recommendation System Based on MapReduce [D]. Beijing: Beijing University of Posts and Telecommunications, 2013.)
[15] 施少怀. 一种基于用户倾向的微博好友推荐算法[D]. 哈尔滨: 哈尔滨工业大学, 2013. (Shi Shaohuai. A Micro Blog Friend Recommendation Algorithm Based on User Tendency [D]. Harbin: Harbin Institute of Technology, 2013.)
[16] Chen J, Geyer W, Dugan C, et al. Make New Friends, but Keep the Old: Recommending People on Social Networking Sites [C]. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems. New York, NY, USA:ACM, 2009: 201-210.
[17] 胡文江, 胡大伟, 高永兵, 等. 基于关联规则与标签的好友推荐算法[J]. 计算机工程与科学, 2013, 35(2): 109-113. (Hu Wenjiang, Hu Dawei, Gao Yongbing, et al. Friend Recommendation Algorithm Based on Association Rules and Tags [J]. Computer Engineering & Science, 2013, 35(2): 109-113.)
[18] 张中峰, 李秋丹. 社交网站中潜在好友推荐模型研究[J]. 情报学报, 2011, 30(12): 1319-1325. (Zhang Zhongfeng, Li Qiudan. Latent Friend Recommendation in Social Network Services [J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(12): 1319-1325.)
[19] 杨晶, 杨长春, 丁虹. 一种改进的新浪微博好友推荐算法[J]. 常州大学学报: 自然科学版, 2013, 25(3): 66-70. (Yang Jing, Yang Changchun, Ding Hong. A Modified Friend Recommending Algorithm Based on Sina Microblogging [J]. Journal of Changzhou University:Natural Science Edition, 2013, 25(3): 66-70.)
[20] 黄亮, 杜永萍. 基于信任关系的潜在好友推荐方法[J]. 山东大学学报: 理学版, 2013, 48(11): 73-79. (Huang Liang, Du Yongping. The Method of Latent Friend Recommendation Based on the Trust Relations [J]. Journal of Shandong University: Nature Science, 2013, 48(11): 73-79.)
[21] Moricz M, Dosbayev Y, Berlyant M. PYMK: Friend Recommendation at Myspace [C]. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, Indianapolis, Indiana, USA. New York, NY, USA: ACM, 2010: 999-1002.
[22] 郑佳佳. 社交网络中基于图排序的好友推荐机制研究与实现[D]. 杭州: 浙江大学, 2011. (Zheng Jiajia. Friends Recommendation Based on Graph Ranking on Social Network Site [D]. Hangzhou: Zhejiang University, 2011.)
[23] ACM SIGKDD. KDD Cup 2012 Track 1 Data [DB/OL]. [2014-05-10]. http://www.kddcup2012.org/c/kddcup2012-track1/data.

[1] Liqing Qiu,Wei Jia,Xin Fan. Influence Maximization Algorithm Based on Overlapping Community[J]. 数据分析与知识发现, 2019, 3(7): 94-102.
[2] Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of ScienceNet.cn
[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[3] Xiwei Wang,Duo Wang,Qingxiao Zheng,Ya’nan Wei. Information Interaction Between User and Enterprise in Online Brand Community: A Study of Virtual Reality Industry[J]. 数据分析与知识发现, 2019, 3(3): 83-94.
[4] Xiang Xue,Yuxiang Zhao. Exploring User Mental Models of Online Music Classification System: Case Study of College Students[J]. 数据分析与知识发现, 2019, 3(2): 1-12.
[5] Jiehua Wu,Jing Shen,Bei Zhou. Classifying Multilayer Social Network Links Based on Transfer Component Analysis[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[6] Yanyang Ma,Yulei Liu,Bochu Xu,Jinyi Zhi. Impacts of Waiting on Mobile Users —— Case Study of Digital Novels[J]. 数据分析与知识发现, 2018, 2(8): 79-87.
[7] Guanghui Ye,Jinglan Hu,Jian Xu,Lixin Xia. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[8] Bo Guo,Junrui Zhao,Yu Sun. Analyzing Characteristics and Dynamics of User Behaviors in Social Q&A Community: Case Study of Zhihu.com[J]. 数据分析与知识发现, 2018, 2(4): 48-58.
[9] Feifei Wang,Shengtai Zhang. Analyzing Information Behaviors of Mobile Social Network Users[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
[10] Ling Zhang,Manman Luo,Lijun Zhu. Analyzing Information Dissemination on Social Networks[J]. 数据分析与知识发现, 2018, 2(2): 46-57.
[11] Ping Liu,Yanan Li,Cong Yu. Building Interactive Knowledge Map for Academic Search[J]. 数据分析与知识发现, 2018, 2(12): 43-51.
[12] Fen Chen,Xi Fu,Yuan He,Chunxiang Xue. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[13] Gang Li,Xiao Wang,Yang Guo. Detecting Relationship Among WeChat Group Members with Co-occurrence of Cooperation[J]. 数据分析与知识发现, 2018, 2(11): 54-63.
[14] Zhongyi Wang,Heming Zhang,Jing Huang,Chunya Li. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[15] Liyi Zhang,Huiran Li. Studying Social Interaction of Online Medical Question-Answering Service[J]. 数据分析与知识发现, 2018, 2(1): 76-87.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn