Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (2): 1-6    DOI: 10.11925/infotech.1003-3513.2015.02.01
Current Issue | Archive | Adv Search |
Implementation of the Framework for Converting Web-data to RDF (W2R)
Chen Tao, Zhang Yongjuan, Chen Heng
Shanghai Information Center for Life Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Download: PDF(698 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

[Objective] The article aims at building W2R framework for converting Web data to RDF format. [Methods] Build the bottom infrastructure of the framework with W2R vocabulary, and convert Web data to RDF format with mapping file which is consisted of system Ontology and Web page elements extracted in XPath syntax. Furthermore, use Virtuoso database as the persistent storage of RDF data. [Results] With the W2R framework, it is convenient for converting Web data to RDF format, merging data in different resources, storing them in named graphs and implementing simple inferences without changing any source code. [Limitations] The system Ontology is made up of public namespaces that describe the bibliographies currently. RDF data is only stored in Virtuoso database. [Conclusions] Through the W2R framework, this paper provides a new way of generating the standardized RDF data for semantic network and linked data applications.

Key wordsOntology      Semantic network      Data acquisition      Web data to RDF data     
Received: 06 August 2014      Published: 17 March 2015
:  G202  

Cite this article:

Chen Tao, Zhang Yongjuan, Chen Heng. Implementation of the Framework for Converting Web-data to RDF (W2R). New Technology of Library and Information Service, 2015, 31(2): 1-6.

URL:     OR

[1] Linked Data: Evolving the Web into a Global Data Space [EB/OL]. [2014-05-17].
[2] 黄永文. 关联数据在图书馆中的应用研究综述[J]. 现代图 书情报技术, 2010(5): 1-7. (Huang Yongwen. Research on Linked Data-driven Library Applications [J]. New Technology of Library and Information Service, 2010(5): 1-7.)
[3] 刘炜, 夏翠娟, 张春景. 大数据与关联数据: 正在到来的 数据技术革命[J]. 现代图书情报技术, 2013(4): 2-9. (Liu Wei, Xia Cuijuan, Zhang Chunjing. Big Data and Linked Data: The Emerging Data Technology for the Future of Librarianship [J]. New Technology of Library and Information Service, 2013(4): 2-9.)
[4] 沈志宏, 张晓林. 关联数据及其应用现状综述[J]. 现代图 书情报技术, 2010(11): 1-9. (Shen Zhihong, Zhang Xiaolin. Linked Data and Its Applications: An Overview [J]. New Technology of Library and Information Service, 2010(11): 1-9.)
[5] R2RML: RDB to RDF Mapping Language [EB/OL]. [2014-07-27].
[6] Unbehauen J, Stadler C, Auer S. Accessing Relational Data on the Web with SparqlMap [C]. In: Proceedings of the 2nd Joint International Conference, Nara, Japan. 2013: 65-80.
[7] Chen T, Zhang Y, Zhang S, et al. Building Semantic Information Search Platform with Extended Sesame Framework [C]. In: Proceeding of the 8th International Conference on Semantic Systems. New York, USA: ACM, 2012: 193-196.
[8] Antoniou G, van Harmelen F. A Semantic Web Primer [M]. The 2nd Edition. London: The MIT Press, 2008.
[9] 张永娟, 陈涛, 张珅. 基于Sesame 及Rdfizer 扩展工具的关 联数据应用平台[J]. 图书情报工作, 2013, 57(16): 135-139. (Zhang Yongjuan, Chen Tao, Zhang Shen. A Linked Data Application Platform Based on the Sesame and Customized-Rdfizer [J]. Library and Information Service, 2013, 57(16): 135-139.)
[10] Bizer C. How to Publish Linked Data on the Web [EB/OL]. [2014-05-10].
[11] 夏翠娟, 刘炜, 赵亮, 等. 关联数据发布技术及其实现——以Drupal 为例[J]. 中国图书馆学报, 2012, 38(1): 49-57. (Xia Cuijuan, Liu Wei, Zhao Liang, et al. The Current Technologies and Tools for Linked Data: A Case of Drupal [J]. Journal of Library Science in China, 2012, 38(1): 49-57.)
[12] Fuseki: Serving RDF Data over HTTP [EB/OL]. [2014-06-08].
[13] RDFa 1.1 Primer-Second Edition [EB/OL]. [2014-04-13].

[1] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[4] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[5] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[6] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[7] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[8] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[9] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[10] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[11] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[12] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[13] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[14] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[15] Yang Xiaoping,Ma Qifeng,Yu Li,Mo Yuting,Wu Jia’nan,Zhang Yue. Gauging Public Opinion with Comment-Clusters[J]. 现代图书情报技术, 2016, 32(7-8): 51-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938