Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (2): 7-14    DOI: 10.11925/infotech.1003-3513.2015.02.02
Current Issue | Archive | Adv Search |
Research on Semantic Mining for Large-scale Oracle Bone Inscriptions Foundation Data
Xiong Jing, Gao Feng, Wu Qinxia
School of Computer and Information Engineering, Anyang Normal University, Anyang 455000, China
Download: PDF(610 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] Find the semantic relations among large-scale Oracle Bone Inscription (OBI) data in order to provide semantic analysis function for OBI research. [Methods] Based on text mining, combined with the semantic Web technology, implement semantic search on the data set of RDF-based entities and their relationships. And using Ontology relationships and Ontology reasoning to extract explicit or implicit semantic relationships among RDF objects. [Results] Experimental results show that the F-Measure can reach 74.49% on OBI literature semantic mining and 70.61% on OBI semantic mining, which satisfy the need of OBI information processing. [Limitations] Semantic mining is based on three different Ontologies instead of an integrated one. [Conclusions] RDF can provide a structured semantic specification description and the LarKC system is suitable for large-scale OBI semantic processing.

Key wordsOracle Bone Inscriptions information processing      Ontology      Semantic mining      LarKC     
Received: 14 August 2014      Published: 17 March 2015
:  TP182  

Cite this article:

Xiong Jing, Gao Feng, Wu Qinxia. Research on Semantic Mining for Large-scale Oracle Bone Inscriptions Foundation Data. New Technology of Library and Information Service, 2015, 31(2): 7-14.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2015.02.02     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2015/V31/I2/7

[1] 江铭虎. 自然语言处理[M]. 北京: 高等教育出版社, 2006. (Jiang Minghu. Natural Language Processing [M]. Beijing: Higher Education Press, 2006.)
[2] 栗青生, 吴琴霞, 杨玉星. 甲骨文字形动态描述库及其字 形生成技术研究[J]. 北京大学学报: 自然科学版, 2013, 49(1): 61-67. (Li Qingsheng, Wu Qinxia, Yang Yuxing. Dynamic Description Library for Jiaguwen Characters and the Research of the Characters Processing [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(1): 61-67.)
[3] 王爱民, 葛文英, 赵哲, 等. 龟甲类甲骨文碎片计算机辅 助缀合研究[J]. 计算机工程与设计, 2011, 32(10): 3570-3573. (Wang Aimin, Ge Wenying, Zhao Zhe, et al. Research on Computer Matching of Inscriptions on Tortoise Fragments [J]. Computer Engineering and Design, 2011, 32(10): 3570-3573.)
[4] 刘永革, 栗青生. 可视化甲骨文输入法的设计与实现[J]. 计算机工程与应用, 2004, 40(17): 139-140. (Liu Yongge, Li Qingsheng. Design and Implementation of Visual Input Method of Oracular Inscriptions on Tortoise Shells and Bones [J]. Computer Engineering and Applications, 2004, 40(17): 139-140.)
[5] 王伟. 基于语义挖掘的智能竞争情报系统研究[J]. 情报理 论与实践, 2008, 31(5): 773-776. (Wang Wei. Research on Semantic Mining-based Intelligent Competitive Intelligence System [J]. Information Studies: Theory & Application, 2008, 31(5): 773-776.)
[6] 杨洁. 基于本体和Apriori 算法的语义挖掘技术研究[D]. 太原: 太原理工大学, 2011.(Yang Jie. Research on Semantic Web Mining Based on Ontology and Algorithm Apriori [D]. Taiyuan: Taiyuan University of Technology, 2011.)
[7] 张辉, 朱俊武. 一种基于本体的多Agent 语义挖掘模型[J]. 微电子学与计算机, 2009, 26(10): 122-124. (Zhang Hui, Zhu Junwu. A Multi-Agent Based on Ontology Semantic Mining Model [J]. Microelectronics & Computer, 2009, 26(10): 122-124.)
[8] 蔡皎洁, 张玉峰. 基于客户兴趣语义挖掘的产业集群信息 平台构建研究[J]. 情报杂志, 2013, 32(6): 161-166. (Cai Jiaojie, Zhang Yufeng. On Industrial Clusters' Information Platform Based on Semantic Mining of Customer Interest [J]. Journal of Intelligence, 2013, 32(6): 161-166.)
[9] Vavpeti? A, Trajkovski I, Novak P K, et al. Semantic Data Mining System g-SEGS [C]. In: Proceedings of the Workshop on Planning to Learn and Service-Oriented Knowledge Discovery. 2011: 17-29.
[10] Jiang L, Zhang H, Yang X, et al. Research on Semantic Text Mining Based on Domain Ontology [C]. In: Proceedings of the 6th IFIP WG 5.14 International Conference, CCTA 2012, Zhangjiajie, China. Springer, 2013: 336-343.
[11] Huang J, Dou D, Dang J, et al. Knowledge Acquisition, Semantic Text Mining, and Security Risks in Health and Biomedical Informatics [J]. World Journal of Biological Chemistry, 2012, 3(2): 27-33.
[12] Berners-Lee T, Bizer C, Heath T. Linked Data -The Story So Far [J]. International Journal on Semantic Web and Information Systems, 2009, 5(3): 1-22.
[13] Jiang X, Zhang X, Gao F, et al. Graph Compression Strategies for Instance-Focused Semantic Mining [C]. In: Proceedings of the 7th Chinese Semantic Web Symposium and 2nd Chinese Web Science Conference (CSWS 2013), Shanghai, China. 2013: 50-61.
[14] 吴琴霞, 高峰, 刘永革. 基于本体的甲骨文专业文档语义 标注方法[J]. 计算机应用与软件, 2013, 30(10): 60-63. (Wu Qinxia, Gao Feng, Liu Yongge. Semantic Annotation Method for Professional Documents in Oracle Bone Script Based on Ontology [J]. Computer Applications and Software, 2013, 30(10): 60-63.)
[15] 董振东, 董强, 郝长伶. 知网的理论发现[J]. 中文信息学 报, 2007, 21(4): 3-9. (Dong Zhendong, Dong Qiang, Hao Changling. Theoretical Findings of HowNet [J]. Journal of Chinese Information Processing, 2007, 21(4): 3-9.)
[16] 熊晶, 钟珞, 王爱民. 甲骨文本体构建方法研究及应用[J]. 武汉理工大学学报: 信息与管理工程版, 2012, 33(6): 953-957. (Xiong Jing, Zhong Luo, Wang Aimin. Ontology Construction Method and Its Application in Oracle Bone Inscriptions [J]. Journal of Wuhan University of Technology: Information & Management Engineering, 2012, 33(6): 953-957.)
[17] 韩姣红. 基于本体的甲骨文文献语义检索模型研究[J]. 图 书馆学研究, 2013(7): 51-57. (Han Jiaohong. Semantic Retrieval Model for Oracle Bone Inscription Literature Based on Ontology [J]. Researches on Library Science, 2013(7): 51-57.)
[18] 冯志伟. 从知识本体谈自然语言处理的人文性[J]. 语言文 字应用, 2005(4): 100-107. (Feng Zhiwei. On Humanity Spirit of Natural Language Processing from the Viewpoint of Ontology [J]. Applied Linguistics, 2005(4): 100-107.)
[19] 许德山, 张智雄, 赵妍. 中文问句与RDF 三元组映射方法 研究[J]. 图书情报工作, 2011, 55(6): 45-48. (Xu Deshan, Zhang Zhixiong, Zhao Yan. Research on Chinese Interrogative Sentences and RDF Triples Mapping Methods [J]. Library and Information Service, 2011, 55(6): 45-48.)
[20] 袁彦芹. 基于支持向量机的大规模文本分类研究与设计[D]. 济南: 山东师范大学, 2007. (Yuan Yanqin. Research on Large-scale Text Classification Based on SVM [D]. Ji'nan: Shandong Normal University, 2007.)
[21] Prud E, Seaborne A. SPARQL Query Language for RDF [EB/OL]. (2008-01-15). [2014-09-20]. http://www.w3.org/TR/rdf-sparql-query/.
[22] 吴琴霞, 刘永革. 基于XML/Schema 甲骨文语料库语料标 注的研究[J]. 科学技术与工程, 2009, 9(17): 5185-5188. (Wu Qinxia, Liu Yongge. Study of Oracle Bone Inscriptions Corpus Tagging Based on XML/Schema [J]. Science Technology and Engineering, 2009, 9(17): 5185-5188.)
[23] Xiong J, Liu Y G, Gao F, et al. Research of Oracle Bone Inscriptions Ontology Construction Based on Relational Database [J]. Procedia Environmental Sciences, 2011, 11: 447-451.
[24] 黄智生, 钟宁. 海量语义数据处理——平台、技术与应用 [M]. 北京: 高等教育出版社, 2012. (Huang Zhisheng, Zhong Ning. Scalable Semantic Data Processing: Platform, Technology and Application [M]. Beijing: Higher Education Press, 2012.)
[25] Fensel D, van Harmelen F, Andersson B, et al. Towards LarKC: A Platform for Web-scale Reasoning [C]. In: Proceedings of the 2008 IEEE International Conference on Semantic Computing. IEEE, 2008.

[1] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[4] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[5] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[6] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[7] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[8] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[9] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[10] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[11] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[12] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[13] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[14] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[15] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn