Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (2): 85-90    DOI: 10.11925/infotech.1003-3513.2015.02.12
Current Issue | Archive | Adv Search |
Application of Location Mapping Technology in Book Positioning and Navigation
Sun Wei1,2, Hao Aiyu1, Lv Qiang2
1. Institute of Software and Service Outsourcing, Suzhou Institute of Industrial Technology, Suzhou 215104, China;
2. School of Computer Science & Technology, Soochow University, Suzhou 215006, China
Download: PDF(1054 KB)   HTML  
Export: BibTeX | EndNote (RIS)      

[Objective] In order to improve the efficiency of finding books in library, this article provides a library book location and navigation system based on smart phone. [Context] Readers often use a low efficient way to find books in library and they need a new method for fast book positioning and navigation. [Methods] Set up a landmark system and create a mapping table between books call number and their locations, and users can search books and their location by mobile, the system provides a navigation path by HEAA algorithm. [Results] Readers can search books and find their location in half-time than before. [Conclusions] This system is better than others in low cost, easy deployment and convenience. It has good accuracy in location and navigation.

Key wordsLocation      Navigation      Shortest path      HEAA algorithm     
Received: 04 August 2014      Published: 17 March 2015
:  G250.72  

Cite this article:

Sun Wei, Hao Aiyu, Lv Qiang. Application of Location Mapping Technology in Book Positioning and Navigation. New Technology of Library and Information Service, 2015, 31(2): 85-90.

URL:     OR

[1] 周傲英, 杨彬, 金澈清, 等. 基于位置的服务:架构与进展[J]. 计算机学报, 2011, 34(7): 1155-1171. (Zhou Aoying, Yang Bin, Jin Cheqing, et al, Location-Based Services: Architecture and Progress [J]. Chinese Journal of Computers, 2011, 34(7): 1155-1171.)
[2] Kim S C, Jeong Y S, Park S O. RFID-based Indoor Location Tracking to Ensure the Safety of the Elderly in Smart Home Environments [J]. Personal and Ubiquitous Computing, 2013, 17(8): 1699-1707.
[3] Ruiz A R J, Granja F S, Prieto Honorato J C, et al. Accurate Pedestrian Indoor Navigation by Tightly Coupling Foot-Mounted IMU and RFID Measurements [J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(1): 178-189.
[4] Fang S H, Wang C H, Huang T Y, et al. An Enhanced ZigBee Indoor Positioning System with an Ensemble Approach [J]. Communications Letters, IEEE, 2012, 16(4): 564-567.
[5] 彭吉练. 利用二维码实现图书馆导向标识系统[J]. 现代图 书情报技术, 2013(4): 77-82. (Peng Jilian. The Design and Implementation of Two-dimensional Code Wayfinding Signage System in Library [J]. New Technology of Library and Information Service, 2013(4): 77-82.)
[6] Han D, Jung S, Lee M, et al. Building a Practical Wi-Fi-Based Indoor Navigation System [J]. Pervasive Computing, IEEE, 2014, 13(2): 72-79.
[7] Retscher G, Moser E, Vredeveld D, et al. Performance and Accuracy Test of a WiFi Indoor Positioning System [J]. Journal of Applied Geodesy, 2007, 1(2): 103-110.
[8] Miao H, Wang Z, Wang J, et al. A Novel Access Point Selection Strategy for Indoor Location with Wi-Fi [C]. In: Proceedings of the 26th Chinese Control and Decision Conference. IEEE, 2014: 5260-5265.
[9] Li X Y, Lv D, Chen C, et al. Integrated Indoor Location System of QR Code and Its Application Based on Windows Phone [A].//Principle and Application Progress in Location-Based Services[M]. Springer International Publishing, 2014: 265-276.
[10] Zhang Z, Zhao Z. A Multiple Mobile Robots Path planning Algorithm Based on A-star and Dijkstra Algorithm [J]. International Journal of Smart Home, 2014, 8(3): 75-86.
[11] Fallah N, Apostolopoulos I, Bekris K E, et al. Indoor Human Navigation Systems: A Survey [J]. Interacting with Computers, 2013, 25(1): 21-33.
[12] Seo D J, Kim J. Development of Autonomous Navigation System for An Indoor Service Robot Application [C]. In: Proceedings of the 13th International Conference on Control, Automation and Systems. IEEE, 2013: 204-206.
[13] Wattanavarangkul N, Wakahara T. Indoor Navigation System for Wheelchair Using Smartphones [A]. //Information Technology Convergence [M]. Springer Netherlands, 2013: 233-241.
[14] Ogawa K, Verbree E, Zlatanova S, et al. Toward Seamless Indoor-Outdoor Applications: Developing Stakeholder-Oriented Location-based Services [J]. Geo-Spatial Information Science, 2011, 14(2): 109-118.

[1] Qingtian Zeng,Mingdi Dai,Chao Li,Hua Duan,Zhongying Zhao. Discovering Important Locations with User Representation and Trace Data[J]. 数据分析与知识发现, 2019, 3(6): 75-82.
[2] Zhuchen Liu,Hao Chen,Yanhua Yu,Jie Li. Extracting Keywords with TextRank and Weighted Word Positions[J]. 数据分析与知识发现, 2018, 2(9): 74-79.
[3] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[4] Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian,Shaozhong Wu,Lihua Li. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[5] Dan Wu,Yi Li,Jing Dong. Impacts of Time Constraint on Information Behaviors in Pedestrian Navigation[J]. 数据分析与知识发现, 2017, 1(5): 2-11.
[6] Dan Wu,Liuxing Lu. Navigation Awareness of Pedestrian Using Think-Aloud Method[J]. 数据分析与知识发现, 2017, 1(5): 23-31.
[7] Dan Wu,Fang Yuan. Studying User Distractions with GPS Based Pedestrian Navigation System[J]. 数据分析与知识发现, 2017, 1(5): 32-41.
[8] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[9] Xiaoojuan Zhang. Analyzing Dynamic Informational, Navigational and Transactional Online Queries[J]. 数据分析与知识发现, 2017, 1(4): 9-19.
[10] Xiangquan Yin,Shuning Li. Analyzing Website Navigation Features of Top U.S. Academic Libraries[J]. 数据分析与知识发现, 2017, 1(3): 90-95.
[11] Sun He,Li Shuqin,Lv Xueqiang,Liu Kehui. Retrieving Geographic Information for Micro-blog’s City Complaints[J]. 现代图书情报技术, 2016, 32(3): 58-66.
[12] Deng Zhiwen,Du Pingping,Mu Yafeng. Library Active-information Service System Based on Location Awareness[J]. 现代图书情报技术, 2016, 32(2): 102-110.
[13] Hong Ma, Yongming Cai. A CA-LDA Model for Chinese Topic Analysis: Case Study of Transportation Law Literature[J]. 数据分析与知识发现, 2016, 32(12): 17-26.
[14] Qun Zhang, Hongjun Wang, Lunwen Wang. Classifying Short Texts with Word Embedding and LDA Model[J]. 数据分析与知识发现, 2016, 32(12): 27-35.
[15] Xu Yuemei,Li Yang,Liang Ye,Cai Lianqiao. Analyzing Evolution of News Topics with Manifold Learning[J]. 现代图书情报技术, 2016, 32(10): 59-69.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938