Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (3): 58-66    DOI: 10.11925/infotech.1003-3513.2015.03.08
Current Issue | Archive | Adv Search |
An Ontology-based and Location-aware Book Recommendation Model in Library
Li Sheng, Wang Yemao
School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430074, China
Download: PDF(752 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] Improve the library recommendation service and help readers select interested books. [Methods] This paper proposes an Ontology-based and location-aware book recommendation model in library by applying Wi-Fi indoor positioning technology, which constructs user's profile based on the books classification Ontology, and then recommends books by combining regional group profile and considering the problem of when to make a recommendation. [Results] The proposed method outperforms the existing Ontology-based hybrid recommend­dation method in accuracy and correlation by 13.6% and 21.8% respectively, and shows 48.03% increase in the set diversity compared with the content-based filtering method. [Limitations] The weights of user preferences and regional group preferences in the recommendation model are not discussed. [Conclusions] This research can improve the library recommendation service and provide location-aware personalized book recommendation.

Key wordsOntology      Location-aware book recommendation      Group modeling      Library building     
Received: 15 September 2014      Published: 16 April 2015
:  G202  

Cite this article:

Li Sheng, Wang Yemao. An Ontology-based and Location-aware Book Recommendation Model in Library. New Technology of Library and Information Service, 2015, 31(3): 58-66.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2015.03.08     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2015/V31/I3/58

[1] Hahn J. Mobile Learning for The Twenty-first Century Librarian [J]. Reference Services Review, 2008, 36(3): 272-288.
[2] Mills K. M-Libraries: Information Use on the Move [R]. University of Cambridge, 2009.
[3] 石林, 徐飞, 徐守坤. 基于用户兴趣建模的个性化推荐[J].计算机应用与软件, 2013, 30(12): 211-214. (Shi Lin, Xu Fei, Xu Shoukun. Personalized Recommendation Based on Users' Interest Modeling [J]. Computer Application and Software, 2013, 30(12): 211-214.)
[4] Gruber T R. A Translation Approach to Portable Ontology Specification [J]. Knowledge Acquisition, 1993, 5(2): 199-220.
[5] Yan D W, Cen Y H, Zhang W, et al. Ontology-based Framework for Personalized Recommendation in Digital Libraries [J]. Journal of Southeast University: English Edition, 2006, 22(3): 385-388.
[6] 丁雪, 张玉峰. 基于本体的智能数字图书馆个性化推荐用户本体研究[J]. 现代情报, 2009, 29(12): 61-65. (Ding Xue, Zhang Yufeng. Research on User Ontology in Personalized Recommendation of Ontology-based Intelligent Digital Library [J]. Journal of Modern Information, 2009, 29(12): 61-65.)
[7] 汪英姿. 基于本体的个性化图书推荐方法研究[J].现代图书情报技术, 2012(12): 72-78. (Wang Yingzi. Research on Ontology-based Personalized Recommendation Method for Library Resources [J]. New Technology of Library and Information Service, 2012(12): 72-78.)
[8] 唐晓玲. 基于本体和协同过滤技术的推荐系统研究[J]. 情报科学, 2013, 31(12): 90-94. (Tang Xiaoling. Research on Recommendation System Based on Ontology and Collabora­tive Filtering Technology [J]. Information Science, 2013, 31(12): 90-94.)
[9] Hahn J. Location-based Recommendation Services in Library Book Stacks [J]. Reference Services Review, 2011, 39(4): 654-674.
[10] Chen C. An Intelligent Mobile Location-aware Book Recommendation System That Enhances Problem-based Learning in Libraries [J]. Interactive Learning Environments, 2013, 21(5): 469-495.
[11] 任沁. 基于领域本体的数字图书馆用户兴趣建模研究[D].武汉: 湖北工业大学, 2012. (Ren Qin. Research on User Interest Modeling in Digital Library Based on Domain Ontology [D]. Wuhan: Hubei University of Technology, 2012.)
[12] Li L, Zheng L, Yang F, et al. Modeling and Broadening Temporal User Interest in Personalized News Recommen­dation [J]. Expert Systems with Applications, 2014, 41(7): 3168-3177.
[13] Sugiyama K, Hatano K, Yoshikawa M. Adaptive Web Search Based on User Profile Constructed without Any Effort from Users [C]. In: Proceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004: 675-684.
[14] Ganesan P, Garcua-molina H, Widom J. Exploiting Hierarchical Domain Structure to Compute Similarity [J]. ACM Transaction on Information System, 2003, 21(1): 64-93.
[15] 王洪伟, 邹莉. 考虑长期与短期兴趣因素的用户偏好建模[J]. 同济大学学报: 自然科学版, 2013, 41(6): 953-960. (Wang Hongwei, Zou Li. Modeling Users'Preference Based on Long-term and Short-term Interests [J]. Journal of Tongji University: Nature Science, 2013, 41(6): 953-960.)
[16] Cantador I, Szomszor M, Alani H, et al. Enriching Ontological User Profiles with Tagging History for Multi-domain Recommendations [C]. In: Proceedings of the 1st International Workshop on Collective Semantics: Collective Intelligence and the Semantic Web (CISWeb'08), Tenerife, Spain. 2008:5-19.
[17] Cantador I, Bellogin A, Castells P. Ontology-based Personalized and Context-aware Recommendations of New Items [C]. In: Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT'08). Washington, DC: IEEE Computer Society, 2008: 562-565.
[18] Kang J, Choi J. An Ontology-based Recommendation System Using Long-term and Short-term Preferences [C]. In: Proceedings of 2011 International Conference on Information Science and Applications (ICISA), Jeju Island, South Korea. IEEE, 2011: 1-8.
[19] Yu Z, Zhou X, Hao Y, et al.TV Program Recommendation for Multiple Viewers Based on User Profile Merging[J].User Modeling and User-Adapted Interaction, 2006, 16(1): 63-82.
[20] Woerndl W, Huebner J, Bader R, et al. A Model for Proactivity in Mobile, Context-aware Recommender Systems [C]. In: Proceedings of the 5th ACM Conference on Recommender Systems (RecSys'11). New York: ACM, 2011: 273-276.
[21] Vallet D, Castells P, Fernández M, et al. Personalized Content Retrieval in Context Using Ontological Knowledge [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(3): 336-346.
[22] Zhang M, Hurley N. Avoiding Monotony: Improving the Diversity of Recommendation Lists [C]. In: Proceedings of the 2008 ACM Conference on Recommender Systems (RecSys'08 ). New York: ACM, 2008: 123-130.

[1] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[3] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[4] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[5] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[6] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[7] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[8] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[9] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[10] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[11] Rujiang Bai,Fuhai Leng,Junhua Liao. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[12] Dan Wu,Chang Liu,Yi Li. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[13] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[14] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[15] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn