Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (6): 13-19    DOI: 10.11925/infotech.1003-3513.2015.06.03
Current Issue | Archive | Adv Search |
Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification
Zhu Ting, Qin Chunxiu, Li Zuhai
School of Economics and Management, Xidian University, Xi'an 710071, China
Download: PDF(505 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] To solve the problem of low efficiency of the algorithm with the increasing number of users. [Methods] This paper proposes a method of collaborative filtering based on user classification. Firstly, the huge users are classified into several groups according to a rule-based classification method. Then, with the guarantee of recommendation accuracy, the local neighbor users are discovered for users. Finally, based on the discovered local neighbors, personalized recommendation is conducted. [Results] User classification and recommendation accuracy are evaluated by F1 and MAE separately. The algorithm efficiency is evaluated according to the time complexity. Experimental results show that with the adoption of a rule-based user classification, collaborative filtering algorithm significantly improves with the guarantee of user classification accuracy and recommendation accuracy. [Limitations] The recommendation accuracy is reduced a little bit. The proposed method is only tested on MovieLens data set, and it needs further validation in other data sets. [Conclusions] This method reduces the computation of local neighbors user identification, while improves the efficiency of the algorithm.

Key wordsPersonalized recommendation      Collaborative filtering      User classification      Rule     
Received: 31 December 2014      Published: 08 July 2015
:  G350  

Cite this article:

Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification. New Technology of Library and Information Service, 2015, 31(6): 13-19.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2015.06.03     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2015/V31/I6/13

[1] 中国互联网络信息中心.第34次中国互联网络发展状况统计报告[EB/OL]. [2014-07-21]. http://www.cnnic.net.cn. (China Internet Network Information Center. The 34th Statistical Report on Internet Development in China [EB/OL]. [2014-07-21]. http://www.cnnic.net.cn.)
[2] 安悦, 李兵, 杨瑞泰, 等. 基于内容的热门微话题个性化推荐研究 [J]. 情报杂志, 2014, 33(2): 155-160. (An Yue, Li Bing, Yang Ruitai, et al. Content-based Personalized Recommendation on Popular Micro-topic [J]. Journal of Intelligence, 2014, 33(2): 155-160.)
[3] 索琪, 卢涛. 基于关联规则的电子商务推荐系统研究[J]. 哈尔滨师范大学自然科学学报, 2005, 21(2): 50-53. (Suo Qi, Lu Tao. Research on Recommender System Based on Association Rules [J]. Natural Sciences Journal of Harbin Normal University, 2005, 21(2): 50-53.)
[4] 范波, 程久军. 用户间多相似度协同过滤推荐算法[J]. 计算机科学, 2012, 39(1): 23-26. (Fan Bo, Cheng Jiujun. Collaborative Filtering Recommendation Algorithm Based on User's Multi-similarity [J]. Computer Science, 2012, 39(1): 23-26.)
[5] 王玉斌, 孟祥武, 胡勋. 一种基于信息老化的协同过滤推荐算法[J]. 电子与信息学报, 2013, 35(10): 2391-2396. (Wang Yubin, Meng Xiangwu, Hu Xun. Information Aging- based Collaborative Filtering Recommendation Algorithm [J]. Journal of Electronics & Information Technology, 2013, 35(10): 2391-2396.)
[6] Massa P, Avesani P. Trust-aware Collaborative Filtering for Recommender Systems [C]. In: Proceedings of the 2004 International Conference on Cooperative Information Systems, Agia Napa, Cyprus. 2004.
[7] Sarwar B M, Karypis G, Konstan J, et al. Application of Dimensionality Reduction in Recommender System—A Case Study [C]. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Workshop on Web Mining for E-Commerce— Challenges and Opportunities (WEBKDD'00). 2000.
[8] 李玲俐. 数据挖掘中分类算法综述 [J]. 重庆师范大学学报: 自然科学版, 2011, 28(4): 44-47. (Li Lingli. A Review on Classification Algorithms in Data Mining [J]. Journal of Chongqing Normal University: Natural Science, 2011, 28(4): 44-47.)
[9] Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules [C]. In: Proceedings of the 20th International Conference on Very Large Data Bases. 1994.
[10] 杨丽娜, 刘科成, 颜志军. 虚拟研究社区中的知识分享与个性化知识推荐[J]. 中国电化教育, 2010(6): 108-112. (Yang Li'na, Liu Kecheng, Yan Zhijun. Knowledge Sharing and Personalized Knowledge Recommendation in Virtual Research Community [J]. CET China Educational Technology, 2010(6): 108-112.)
[11] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-art and Possible Extensions [J]. IEEE Transaction on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[12] Sarwar B, Karypis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms [C]. In: Proceedings of the 10th International Conference on World Wide Web. ACM, 2001: 285-295.
[13] Sarwar B, Karypis G, Konstan J, et al. Analysis of Recommendation Algorithms for E-commerce [C]. In: Proceedings of the 2nd ACM Conference on Electronic Commerce. ACM, 2000: 158-167.
[14] Pazzani M, Billsus D. Learning and Revising User Profiles: The Identification of Interesting Web Sites [J]. Machine Learning, 1997, 27(3): 313-331.
[15] 夏培勇. 个性化推荐技术中的协同过滤算法研究[D]. 青岛: 中国海洋大学, 2011. (Xia Peiyong. Research on Collaborative Filtering Algorithm of Personalized Recommendation Technology [D]. Qingdao: China Ocean University, 2011.)
[16] 郭艳红. 推荐系统的协同过滤算法与应用研究 [D]. 大连: 大连理工大学, 2008. (Guo Yanhong. On Collaborative Filtering Algorithm and Applications of Recommender Systems [D]. Dalian: Dalian University of Technology, 2008.)

[1] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[2] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[3] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[4] Yue He,Yue Feng,Shupeng Zhao,Yufeng Ma. Recommending Contents Based on Zhihu Q&A Community: Case Study of Logistics Topics[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[5] Jie Li,Fang Yang,Chenxi Xu. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[6] Daoping Wang,Zhongyang Jiang,Boqing Zhang. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[7] Yong Wang,Yongdong Wang,Huifang Guo,Yumin Zhou. Measuring Item Similarity Based on Increment of Diversity[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[8] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[9] Yue He,Aixin Wang,Yue Feng,Li Wang. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[10] Fuliang Xue,Junling Liu. Improving Collaborative Filtering Recommendation Based on Trust Relationship Among Users[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[11] Xingxin Qin,Rongbo Wang,Xiaoxi Huang,Zhiqun Chen. Slope One Collaborative Filtering Algorithm Based on Multi-Weights[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[12] Meimei Chen,Kangjie Xue. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[13] Meimei Chen, Kangjie Xue. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[14] Xing Wei,Dehua Hu,Minhan Yi,Qizhen Zhu,Wenjie Zhu. Extracting Disease-Gene-Drug Correlations Based on Data Cube[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[15] Mingxuan Huang. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn