Please wait a minute...
New Technology of Library and Information Service  2015, Vol. 31 Issue (9): 26-30    DOI: 10.11925/infotech.1003-3513.2015.09.04
Current Issue | Archive | Adv Search |
Research of Chinese Chunk Parsing in Application of the Product Feature Extraction
Du Siqi1, Li Honglian1, Lv Xueqiang2
1 School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China;
2 Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing Information Science and Technology University, Beijing 100101, China
Download: PDF(411 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper aims at the problem of product feature extraction, especially the noun phrase identification. [Methods] Chinese Chunk Parsing is used to extract the feature, and frequent sets are generated by Apriori. Then the candidate product features are filtered according to the rules of the minimum support, frequent nouns and TF-IDF. At last, the final product feature sets are obtained. [Results] In order to verify the effectiveness of the method, the car reviews are used in this paper, the average recall rate reaches 76.89%, the average precision rate reaches 84.03%. [Limitations] The recall rate is low and there is noun phrase identification error in the test. [Conclusions] Experiment results show that the method can extract product feature from Chinese reviews with good effects.

Received: 02 March 2015      Published: 06 April 2016
:  TP391  

Cite this article:

Du Siqi, Li Honglian, Lv Xueqiang. Research of Chinese Chunk Parsing in Application of the Product Feature Extraction. New Technology of Library and Information Service, 2015, 31(9): 26-30.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2015.09.04     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2015/V31/I9/26

[1] 祁志民, 刘涌. 浅谈我国电子商务的发展现状与趋势[J]. 学术交流, 2009(7): 136-138. (Qi Zhimin, Liu Yong. Introduction to the China Electronic Commerce Development Present Situa­tion and Trends [J]. Academic Exchange, 2009(7): 136-138.)
[2] 姚天昉, 聂青阳, 李建超, 等. 一个用于汉语汽车评论的意见挖掘系统[C]. 见: 中文信息处理前沿进展——中国中文信息学会二十五周年学术会议论文集. 2006. (Yao Tianfang, Nie Qingyang, Li Jianchao, et al. An Opinion Mining System for Chinese Automobile Reviews [C]. In: Proceedings of the 25th Academic Conference of Chinese Information Processing Society of China on Frontiers of Chinese Information Processing. 2006.)
[3] 娄德成, 姚天昉. 汉语句子语义极性分析和观点挖掘抽取方法的研究[J]. 计算机应用, 2006, 26(11): 2622-2625. (Lou Decheng, Yao Tianfang. Semantic Polarity Analysis and Opinion Mining on Chinese Reviews Sentence [J]. Computer Applications, 2006, 26(11): 2622-2625.)
[4] Shi B, Chang K. Mining Chinese Reviews [C]. In: Procee­dings of the 6th IEEE International Conference on Data Mining Workshops. IEEE, 2006: 585-589.
[5] Hu M, Liu B. Mining and Summarizing Customer Reviews [C]. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004: 168-177.
[6] Popescu A M, Etzioni O. Extracting Product Features and Opinions from Reviews [A].//Natural Language Processing and Text Mining [M]. Springer London, 2005: 339-446.
[7] 伍星, 何中市, 黄永文.基于弱监督学习的产品特征抽取[J]. 计算机工程, 2009, 35(13): 199-201. (Wu Xing, He Zhongshi, Huang Yongwen. Product Feature Extraction Based on Weakly Supervised Learning [J]. Computer Enineering, 2009, 35(13): 199-201.)
[8] 李实, 叶强, 李一军, 等. 中文网络客户评论的产品特征挖掘方法研究[J]. 管理科学学报, 2009, 12(2): 142-150. (Li Shi, Ye Qiang, Li Yijun, et al. Mining Features of Product from Chinese Customer Online Reviews [J]. Journal of Management Science in China, 2009, 12(2): 142-150.)
[9] 李业刚, 黄河燕. 汉语组块分析综述[J]. 中文信息学报, 2013, 27(3): 1-8. (Li Yegang, Huang Heyan. A Survey on
Chinese Chunk Parsing [J]. Journal of Chinese Information Process, 2013, 27(3): 1-8.)
[10] 周雅倩, 郭以昆, 黄萱菁, 等.基于最大熵方法的中英文基本名词短语识别[J]. 计算机研究与发展, 2003, 40(3): 440-445. (Zhou Yaqian, Guo Yikun, Huang Xuanjing, et al. Chinese and English BaseNP Recognition Based on a Maximun Entropy Model [J]. Journal of Computer Research and Development, 2003, 40(3): 440-445.)
[11] 路永和, 李焰锋. 改进TF-IDF算法的文本特征项权值计算方法[J]. 图书情报工作, 2013, 57(3): 90-95. (Lu Yonghe, Li Yanfeng. Improvement of Text Feature Weighting Method Based on TF-IDF Algorithm [J]. Library and Information Service, 2013, 57(3): 90-95.)
[12] 覃世安, 李法运. 文本分类中TF-IDF方法的改进研究[J]. 现代图书情报技术, 2013 (10): 27-30. (Qin Shian, Li Fayun. Improved TF-IDF Method in Text Classification [J]. New Technology of Library and Information Service, 2013(10): 27-30.)

[1] Xiaofeng Li,Jing Ma,Chi Li,Hengmin Zhu. Identifying Commodity Names Based on XGBoost Model[J]. 数据分析与知识发现, 2019, 3(7): 34-41.
[2] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[3] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[4] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[5] Beibei Kong,Jing Xie,Li Qian,Zhijun Chang,Zhenxin Wu. Methodology and Tools to Enrich Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(7): 113-122.
[6] Fan Xuexue, Wang Zhirong, Xu Wu, Liang Yin, Ma Xiaohu. Research on Semantic Similarity Estimation Algorithm of Medical Terminology Based on Medical Ontology[J]. 现代图书情报技术, 2015, 31(12): 57-64.
[7] Ren Haiying, Yu Liting. A Multi-strategy Method for Word Sense Disambiguation Based on Wikipedia[J]. 现代图书情报技术, 2015, 31(11): 18-25.
[8] Du Kun, Liu Huailiang, Guo Lujie. Study on the Modified Method of Feature Weighting with Complex Networks[J]. 现代图书情报技术, 2015, 31(11): 26-32.
[9] Ye Chuan, Ma Jing. Research on Topic Discovery Algoritm of Multimedia Microblog Comments Information[J]. 现代图书情报技术, 2015, 31(11): 51-59.
[10] Xie Xiaqing, Wu Xu. Application of Visualization Technology for “Classic Reading” Platform[J]. 现代图书情报技术, 2015, 31(11): 96-103.
[11] He Yu, Lv Xueqiang, Xu Liping. A Chinese Term Extraction System in New Energy Vehicles Domain[J]. 现代图书情报技术, 2015, 31(10): 88-94.
[12] Xu Deshan, Li Hui, Zhang Yunliang. A Method of Keywords Annotation Based on Linked Triples[J]. 现代图书情报技术, 2015, 31(9): 31-37.
[13] Dun Wenjie, Sun Yigang, Zhu Xianzhong. Design and Realization of Multimedia Document Structure of Internet TV[J]. 现代图书情报技术, 2015, 31(9): 82-89.
[14] Chen Shiqin, Li Wenjiang. Application of WebSocket in Library Mobile Information Service[J]. 现代图书情报技术, 2015, 31(9): 90-96.
[15] Tong Guoping, Sun Jianjun. User Behavior Analysis Based on Search Engine Log[J]. 现代图书情报技术, 2015, 31(7-8): 80-88.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn