Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (1): 32-39    DOI: 10.11925/infotech.1003-3513.2016.01.06
Orginal Article Current Issue | Archive | Adv Search |
Combine Deep Belief Networks and Fuzzy Set for Recognition of Fraud Transaction
Liyi Zhang,Chang Liu()
School of Information Management, Wuhan University, Wuhan 430072, China
Download: PDF(647 KB)   HTML ( 58
Export: BibTeX | EndNote (RIS)      

[Objective] To solve the problem of fraud transaction in e-commerce platform. [Methods] This paper proposes a method that combine Deep Belief Networks and fuzzy set based on consumers’ purchase history and reviews. Through recognizing the users in fraud transactions—cheaters to recognize the fraud transactions. [Results] Tested by experiments using the data crawled from, the accuracy can be achieved 89%. Compared with the shallow machine learning model, the comprehensive performance improves significantly. [Limitations] In contrast with the huge normal users and the users in fraud transactions, the experimental data in the paper is relatively small. And the test data only from, lack of the data from the other e-commerce platform to be validated. [Conclusions] The users in fraud transactions can be identified by the method, and the fraud transaction in e-commerce can be reduced.

Key wordsFraud transaction      Cheater recognition      Product reviews      Deep learning      Fuzzy set     
Received: 26 June 2015      Published: 04 February 2016

Cite this article:

Liyi Zhang,Chang Liu. Combine Deep Belief Networks and Fuzzy Set for Recognition of Fraud Transaction. New Technology of Library and Information Service, 2016, 32(1): 32-39.

URL:     OR

[1] 中国电子商务研究中心. 2014年度中国电子商务市场数据监测报告[R/OL]. [2015-04-08]. .
[1] (China E-Business Research Center. The 2014 Report of China E-Business Market Data Monitoring [R/OL]. [2015-04-08].
[2] “2014 年最成功电子商务网站”提名: 淘宝网[EB/OL]. [2014-12-05]. .
[2] ( is Nominated for “The Most Successful Electronic Commerce Website in 2014” [EB/OL]. [2014-12- 05].
[3] Jindal N, Liu B.Opinion Spam and Analysis [C]. In: Proceedings of the 2008 International Conference on Web Search and Web Data Mining (WSDM). 2008.
[4] Jindal N, Liu B, Lim E P.Finding Unusual Review Patterns Using Unexpected Rules [C]. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM). 2010:1549-1552.
[5] Ott M, Choi Y, Cardie C, et al.Finding Deceptive Opinion Spam by Any Stretch of the Imagination [C]. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011: 309-319.
[6] 任亚峰, 尹兰, 姬东鸿. 基于语言结构和情感极性的虚假评论识别[J]. 计算机科学与探索, 2014, 8(3): 313-320.
[6] (Ren Yafeng, Yin Lan, Ji Donghong.Deceptive Reviews Detection Based on Language Structure and Sentiment Polarity[J]. Journal of Frontiers of Computer Science & Technology, 2014, 8(3): 313-320.)
[7] Feng S, Banerjee R, Choi Y.Syntactic Stylometry for Deception Detection [C]. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers. 2012: 171-175.
[8] Fei G, Mukherjee A, Liu B, et al.Exploiting Burstiness in Reviews for Review Spammer Detection [C]. In: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media. 2013, 13: 175-184.
[9] Lim E P, Nguyen V A, Jindal N, et al.Detecting Product Review Spammers Using Rating Behaviors [C]. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. ACM, 2010: 939-948.
[10] Jiang B, Cao R H, Chen B.Detecting Product Review Spammers Using Activity Model [C]. In: Proceedings of the 2013 International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013). Atlantis Press, 2013:650-653.
[11] 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天, 今天和明天[J]. 计算机研究与发展, 2015, 50(9): 1799-1804.
[11] (Yu Kai, Jia Lei, Chen Yuqiang, et al.Deep Learning: Yesterday, Today, and Tomorrow[J]. Journal of Computer Research and Development, 2015, 50(9): 1799-1804.)
[12] 孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8): 2806-2810.
[12] (Sun Zhijun, Xue Lei, Xu Yangming, et al.Overview of Deep Learning[J]. Application Research of Computers, 2012, 29(8): 2806-2810.)
[13] Dahl G E, Yu D, Deng L, et al.Context-Dependent Pre-trained Deep Neural Networks for Large-Vocabulary Speech Recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 30-42.
[14] Collobert R, Weston J.A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning [C]. In: Proceedings of the 25th International Conference on Machine Learning. ACM, 2008: 160-167.
[15] Krizhevsky A, Sutskever I, Hinton G E.Imagenet Classification with Deep Convolutional Neural Networks [C]. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems. 2012: 1097-1105.
[16] Hinton G E, Osindero S, Teh Y W.A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[17] 李葆青. 基于卷积神经网络的模式分类器[J]. 大连大学学报, 2003, 24(2):19-23.
[17] (Li Baoqing.Building Pattern Classifiers with Convolutional Neural Networks[J]. Journal of Dalian University, 2003, 24(2): 19-23.)
[18] Zeki S.Splendors and Miseries of the Brain: Love, Creativity, and the Quest for Human Happiness[M]. The 2nd Edition. John Wiley & Sons, 2011.
[19] Mendel J M.On a Novel Way of Processing Data that Uses Fuzzy Sets for Later Use in Rule-based Regression and Pattern Classification[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2014, 14(1): 1-7.
[20] Simpson P K.Fuzzy Min-Max Neural Networks. I. Classification[J]. IEEE Transactions on Neural Networks, 1992, 3(5): 776-786.
[21] Fu G, Wang X.Chinese Sentence-level Sentiment Classification Based on Fuzzy Sets [C]. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Association for Computational Linguistics, 2010: 312-319.
[22] Whitrow C, Hand D J, Juszczak P, et al.Transaction Aggregation as a Strategy for Credit Card Fraud Detection[J]. Data Mining and Knowledge Discovery, 2009, 18(1): 30-55.
[23] Leng B, Zhang X, Yao M, et al.A 3D Model Recognition Mechanism Based on Deep Boltzmann Machines[J]. Neurocomputing, 2015, 151: 593-602.
[24] Rutkowska P D.Neuro-fuzzy Architectures and Hybrid Learning[M]. Physica-Verlag HD, 2012.
[25] Zimmermann H J.Fuzzy Set Theory—And Its Applications[M]. Springer Netherlands, 2001.
[26] Wang X Y, Yang H Y, Li D M.A New Content-based Image Retrieval Technique Using Color and Texture Information[J]. Computers & Electrical Engineering, 2013, 39(3): 746-761.
[1] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[2] Jingjing Pei,Xiaoqiu Le. Identifying Coordinate Text Blocks in Discourses[J]. 数据分析与知识发现, 2019, 3(5): 51-56.
[3] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[4] Changlei Fu,Li Qian,Huaping Zhang,Huaming Zhao,Jing Xie. Mining Innovative Topics Based on Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
[5] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[6] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[7] Guoming Feng,Xiaodong Zhang,Suhui Liu. Classifying Chinese Texts with CapsNet[J]. 数据分析与知识发现, 2018, 2(12): 68-76.
[8] Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian,Shaozhong Wu,Lihua Li. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[9] Wengang Feng,Jing Huang. Early Warning for Civil Aviation Security Checks Based on Deep Learning[J]. 数据分析与知识发现, 2018, 2(10): 46-53.
[10] Jiaheng Hu,Yonghua Cen,Chengyao Wu. Constructing Sentiment Dictionary with Deep Learning: Case Study of Financial Data[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[11] Sanhong Deng,Yuyangzi Fu,Hao Wang. Multi-Label Classification of Chinese Books with LSTM Model[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
[12] Zhongqun Wang,Dongsheng Wu,Sheng Jiang,Subin Huang. Ranking Credibility of Online Product Reviews Based on Feature-Opinion Pair[J]. 数据分析与知识发现, 2017, 1(10): 32-42.
[13] Danhao Zhu, Lei Yang, Dongbo Wang. Recognizing Chinese Organization Names Based on Deep Learning: A Recurrent Network Model[J]. 数据分析与知识发现, 2016, 32(12): 36-43.
[14] Zhang Li, Xu Xin. Implicit Feature Identification in Product Reviews[J]. 现代图书情报技术, 2015, 31(12): 42-47.
[15] Meng Meiren, Ding Shengchun. Research on the Credibility of Online Chinese Product Reviews[J]. 现代图书情报技术, 2013, 29(9): 60-66.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938