Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (4): 40-47    DOI: 10.11925/infotech.1003-3513.2016.04.05
Orginal Article Current Issue | Archive | Adv Search |
Evaluating Online Reviews Based on Text Content Features
Meng Yuan(),Wang Hongwei
School of Economics and Management, Tongji University, Shanghai 210000, China
Download: PDF(526 KB)   HTML ( 78
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims to effectively extract multi-dimensional characteristics of online reviews and then examine the impact of text content to the review quality evaluation. [Methods] First, we quantified and extracted content features based on the textual and sentimental message from the reviews. Then, adopted the GBDT model to evaluate the influence of feature sets to classification results, along with greedy feature selection procedure to identify the most effective content features. Finally, we examined the influences of these features. [Results] The proposed method could improve the performance of review quality evaluation tasks, especially the recall and precision of the new system. [Limitations] Our research focused on review data from search services, and did not investigate products like movies and music. [Conclusions] The information gained from reviews and product feature words, degree of sentimental objectiveness, and differences among review contents all posed important effects to review quality evaluation.

Key wordsReview quality      Information feature      Sentiment orientation      Review content      Greedy feature selection     
Received: 09 December 2015      Published: 13 May 2016

Cite this article:

Meng Yuan,Wang Hongwei. Evaluating Online Reviews Based on Text Content Features. New Technology of Library and Information Service, 2016, 32(4): 40-47.

URL:     OR

[1] 聂卉, 容哲. 面向评论效用评估的文本情感特征提取[J]. 现代图书情报技术, 2015 (7-8): 104-112.
[1] (Nie Hui, Rong Zhe.Review Helpfulness Prediction Research Based on Review Sentiment Feature Sets[J]. New Technology of Library and Information Service, 2015(7-8): 104-112.)
[2] 杨铭, 祁巍, 闫相斌, 等. 在线商品评论的效用分析研究[J]. 管理科学学报, 2012,15(5): 65-75.
[2] (Yang Ming, Qi Wei, Yan Xiangbin, et al.Utility Analysis for Online Product Review[J]. Journal of Management Science in China, 2012, 15(5): 65-75.)
[3] 高雅, 李红, 施慧斌. 在线评论投票数的影响因素研究[J]. 中国管理信息化, 2012, 15(17): 88-91.
[3] (Gao Ya, Li Hong, Shi Huibin.The Research of the Impact Factors of the Online Review Votes[J]. China Management Informationization, 2012, 15(17): 88-91.)
[4] 严建援, 张丽, 张蕾. 电子商务中在线评论内容对评论有用性影响的实证研究[J]. 情报科学, 2012, 30(5): 713-719.
[4] (Yan Jianyuan, Zhang Li, Zhang Lei.An Empirical Study of the Impact of Review Content on Online Reviews Helpfulness in E-Commerce[J]. Information Science, 2012, 30(5): 713-719.)
[5] 杨爽. 信息质量和社区地位对用户创造产品评论的感知有用性影响机制——基于Tobit模型回归[J]. 管理评论, 2013, 25(5): 136-143,154.
[5] (Yang Shuang.The Impact Mechanism of Information Quality and Community Status on Perceived Usefulness for User-Generated Product Reviews——Tobit Regression Analysis[J]. Management Review, 2013, 25(5): 136-143, 154.)
[6] 殷国鹏. 消费者认为怎样的在线评论更有用?——社会性因素的影响效应[J]. 管理世界, 2012(12): 115-124.
[6] (Yin Guopeng.What is the Kind of Online Reviews that Consumer Think are More Useful? The Effect of Social Factors Influence[J]. Management World, 2012(12): 115-124. )
[7] Kim S M, Pantel P, Chklovski T, et al.Automatically Assessing Review Helpfulness [C]. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP), Sydney, Australia. Stroudsburg, PA, USA: ACL, 2006: 423-430.
[8] Ghose A, Ipeirotis P G.Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(10): 1498-1512.
[9] Li F, Zhang Y L, Dang Y, et al.Analyzing Sentiments in Web2.0 Social Medial Data in Chinese: Experiments on Business and Marketing Related Chinese Web Forums[J]. Information Technology Management, 2013(14): 231-242.
[10] Liu Y, Jin J, Ji P, et al.Identifying Helpful Online Reviews: A Product Designer’s Perspective[J]. Computer-Aided Design, 2013, 45(2): 180-194.
[11] Chen C C, Tseng Y-D.Quality Evaluation of Product Reviews Using an Information Quality Framework[J]. Decision Support Systems, 2011, 50(4): 755-768.
[12] 王伟, 王洪伟. 特征观点对购买意愿的影响: 在线评论的情感分析方法[J]. 系统工程理论与实践, 2016, 36(1): 63-76.
[12] (Wang Wei, Wang Hongwei.The Influence of Aspect- based Opinions on User’s Purchase Intention Using Sentiment Analysis of Online Reviews[J]. Systems Engineering—— Theory & Practice, 2016, 36(1): 63-76.)
[13] Ayaru L, Ypsilantis P-P, Nanapragasam A, et al.Prediction of Outcome in Acute Lower Gastrointestinal Bleeding Using Gradient Boosting[J]. PLoS ONE, 2015, 10(7). DOI: 10.1371/journal.pone.0132485.
[14] Semanjski I, Gautama S.Smart City Mobility Application- Gradient Boosting Trees for Mobility Prediction and Analysis Based on Crowd Sourced Data[J]. Sensors, 2015, 15(7): 15974-15987.
[15] Zhang R, Tran T.An Information Gain-based Approach for Recommending Useful Product Reviews[J]. Knowledge and Information Systems, 2011, 26(3): 419-434.
[16] Jindal N, Liu B.Review Spam Detection [C]. In: Proceedings of the 16th International Conference on World Wide Web, Banff, Alberta, Canada. New York, NY, USA: ACM, 2007: 1189-1190.
[17] 吴军. 数学之美[M]. 北京: 人民邮电出版社, 2012:60-64.
[17] (Wu Jun.The Beauty of Mathmatics [M]. Beijing: Posts and Telecom Press, 2012: 60-64.)
[18] Pang B, Lee L.A Sentiment Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts [C]. In: Proceeding of the 42nd Annual Meeting of the Association for Computational Linguistic (ACL). Morristown, NJ, USA: ACL, 2004: 271-278.
[19] Jiang Z P, Ng H T.Semantic Role Labeling of NomBank: A Maximum Entropy Approach [C]. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: ACL, 2006: 138-145.
[20] Liu J, Cao Y, Lin C-Y, et al.Low-Quality Product Review Detection in Opinion Summarization [C]. In: Proceedings of the 2007 Joint Conference on EMNLP-CoNLL. ACL Press, 2007: 334-342.
[1] Yang Xiaoping,Ma Qifeng,Yu Li,Mo Yuting,Wu Jia’nan,Zhang Yue. Gauging Public Opinion with Comment-Clusters[J]. 现代图书情报技术, 2016, 32(7-8): 51-59.
[2] Zhang Hongbin, Li Guangli. Research on Sentiment Orientation Analysis of Product Online Reviews[J]. 现代图书情报技术, 2012, (10): 61-66.
[3] Zhang Qingliang, Xu Jian. Research on Automatic Extraction of Web Sentiment Words[J]. 现代图书情报技术, 2011, 27(10): 24-28.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938