Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (4): 81-90    DOI: 10.11925/infotech.1003-3513.2016.04.10
Orginal Article Current Issue | Archive | Adv Search |
Similarity Measurement of Research Interests in Semantic Network
Ba Zhichao1,2(),Li Gang1,Zhu Shiwei2
1School of Information Management, Wuhan University, Wuhan 430072, China
2Information Research Institute of Shandong Academy of Sciences, Ji’nan 250014, China
Download: PDF(712 KB)   HTML ( 44
Export: BibTeX | EndNote (RIS)      

[Objective] This study aims to identify relationship among authors of papers with similar contents but different keywords, and then tries to add more sematic factors to the co-occurrence analysis. [Methods] We proposed a method to gauge the similarity of research interests based on the keywords semantic network system. First, all keywords were represented as word vectors and translated into low dismension distribution with the help of neural network language—word2vec model. Second, we calculated the semantic association of keywords to build up a semantic network. Finally, we adopted the Jensen-Shannon distance method to measure the similarity of research interests. [Results] The proposed approach can accurately identify the similarities of co-occurrence and non co-occurrence terms and then effectively predict potential cooperation among authors. [Limitations] The amount and accuracy of training materials need to be increased. At present, we could only find potential cooperation between two authors. More research is needed to explore the possibilities of cooperation among multi-authors. [Conclusions] The proposed method could help to improve the performance of traditional co-occurrence analysis.

Key wordsAuthor-network network      Neural network language model      Semantic similarity      Matrix of research interests     
Received: 02 December 2015      Published: 13 May 2016

Cite this article:

Ba Zhichao,Li Gang,Zhu Shiwei. Similarity Measurement of Research Interests in Semantic Network. New Technology of Library and Information Service, 2016, 32(4): 81-90.

URL:     OR

[1] 邱均平, 刘国徽, 董克. 基于合作分析的知识聚合与学科知识结构研究——以国内知识管理领域为例[J]. 情报理论与实践, 2014, 37(8): 6-11.
[1] (Qiu Junping, Liu Guohui, Dong Ke.Research on Knowledge Aggregation and Discipline Structure Based on Collaboration Analysis—Taking the Field of Knowledge Management in Domestic as an Example[J]. Information Studies: Theory&Application, 2014, 37(8): 6-11.)
[2] 李纲, 李岚凤, 毛进, 等. 作者合著网络中研究兴趣相似性实证研究[J]. 图书情报工作, 2015, 59(2): 75-81.
[2] (Li Gang, Li Lanfeng, Mao Jin, et al.Empirical Research on Similarity of Research Interests in Co-authorship Network[J]. Library and Information Service, 2015, 59(2): 75-81.)
[3] 王福生, 石秀春, 杨洪勇. 基于作者簇的科研合作网络模型[J]. 情报理论与实践, 2009, 32(1): 35-37.
[3] (Wang Fusheng, Shi Xiuchun, Yang Hongyong.Research on Scientific Collaboration Network Based on Author Cliques[J]. Information Studies: Theory & Application, 2009, 32(1): 35-37.)
[4] Abramo G, D’Angelo C A, Costa F. Identifying Interdisciplinary Through the Disciplinary Classification of Coauthors of Scientific Publications[J]. Journal of the American Society for Information Science and Technology, 2012, 63(11): 2206-2222.
[5] 邱均平, 张晓培. 基于CSSCI的国内知识管理领域作者共被引分析[J]. 情报科学, 2011, 29(10): 1141-1145.
[5] (Qiu Junping, Zhang Xiaopei.Author Co-citation Analysis of Knowledge Management in China Based on the CSSCI[J]. Information Science, 2011, 29(10): 1141-1145.)
[6] 宋艳辉, 武夷山. 基于作者文献耦合分析的情报学知识结构研究[J]. 图书情报工作, 2014, 58(1): 117-123.
[6] (Song Yanhui, Wu Yishan.Resarch on Knowledge Structure of Information Science Based on Author Bibliographic-coupling Analysis[J]. Library and Information Service, 2014, 58(1): 117-123.)
[7] 孙海生. 作者关键词共现网络及实证研究[J]. 情报杂志, 2012, 31(9): 63-67.
[7] (Sun Haisheng.Author Keyword Co-Occurrence Network Analysis: An Empirical Research[J]. Journal of Intelligence, 2012, 31(9): 63-67.)
[8] 刘萍, 郭月培, 郭怡婷. 利用作者关键词网络探测作者相似性[J]. 现代图书情报技术, 2013(12): 62-69.
[8] (Liu Ping, Guo Yuepei, Guo Yiting.Use of Author-Keyword Network for Detecting Author Similarity[J]. New Technology of Library and Information, 2013(12): 62-69.)
[9] Jan Van Eck N, Waltman L. Appropritate Similarity Measure for Author Co-citation Analysis[J]. Journal of the American Society for Information Science and Technology, 2008, 59(10): 1653-1661.
[10] 邱均平, 李小涛. 基于引文网络挖掘和时序分析的知识扩散研究[J]. 情报理论与实践, 2014, 37(7): 5-10.
[10] (Qiu Junping, Li Xiaotao.Research on Knowledge Diffusion Based on Citation Network Mining and Timing Analysis[J]. Information Studies: Theory & Application, 2014, 37(7): 5-10.)
[11] Zhao D, Strotman A.Evolution of Research Activities and Intellectual Influences in Information Science 1996-2005: Introducing Author Bibliographic-coupling Analysis[J]. Journal of the American Society for Information Science and Technology, 2008, 59(13): 2070-2086.
[12] 陈远, 王菲菲. 基于CSSCI的国内情报学领域作者文献耦合分析[J]. 情报资料工作, 2011, 32(5): 6-12.
[12] (Chen Yuan, Wang Feifei.An Analysis on the Bibliographic Coupling in the Field of Information Studies in China: Based on CSSCI[J]. Information and Documentation Services, 2011, 32(5): 6-12.)
[13] 王知津, 周鹏, 谢丽娜. 用ABCA 方法识别和阐释我国当代情报学研究领域[J]. 情报学报, 2013, 32(1): 4-12.
[13] (Wang Zhijin, Zhou Peng, Xie Lina.The Identification and Explanation of Research Fields of Contemporary Information Science in China Using ABCA Method[J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(1): 4-12.)
[14] 陈卫静, 郑颖. 基于作者关键词耦合的潜在合作关系挖掘[J]. 情报杂志, 2013, 32(5): 127-131.
[14] (Chen Weijing, Zheng Ying.Mining Potential Cooperative Relationships Based on the Author Keyword Coupling Analysis[J]. Journal of Intelligence, 2013, 32(5): 127-131.)
[15] Morris S A, Yen G G.Crossmaps: Visualization of Overlapping Relationships in Collections of Journal Papers[J]. Proceedings of the National Academy of Sciences, 2004, 101(S1): 5291-5296.)
[16] Onyancha O B, Ocholla D N.Is HTV/AIDS in Africa Distinct? What Can We Learn from an Analysis of the Literature[J]. Scientometrics, 2009, 79(1): 277-296.
[17] 邱均平, 陈木佩. 我国计量学领域作者合作关系研究[J]. 情报理论与实践, 2012, 35(11): 56-60.
[17] (Qiu Junping, Chen Mupei.Research on Author Collaboration in the Metrology Field in China[J]. Information Studies: Theory&Application, 2012, 35(11): 56-60.)
[18] 丁敬达. 创新知识社区内部科学交流的特征和规律——基于某国家重点实验室的实证分析[J]. 情报学报, 2011, 30(10): 1086-1094.
[18] (Ding Jingda.Characteristics and Regularity in Scientific Communication Within Innovative Knowledge Community: An Empirical Study of a State Key Laboratory[J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(10): 1086-1094.)
[19] Mikolov T, Sutskever I, Chen K, et al.Distributed Representations of Words and Phrases and Their Compositionality [C]. In: Proceedings of the Neural Infornational Processing Systems Conference. Nevada, United States: Neural Information Processing Systems Foundation, 2013: 3111-3119.)
[20] Morin F, Bengio Y.Hierarchical Probabilistic Neural Network Language Model [C]. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics. Cambridge: Cambridge University Press, 2005: 246-252.
[21] Polzehl J, Spokoiny V.Propagation-Separation Approach for Local Likelihood Estimation[J]. Probability Theory and Related Fields, 2006, 135(3): 335-362.
[22] Callon M, Courtial J P, Laville F.Co-word Analysis as a Tool for Describing the Network of Interactions Between Basic and Technological Research: The Case of Polymer Chemsitry[J]. Scientmetrics, 1991, 22(1): 155-205.
[23] 郑华川, 于晓欧, 辛彦. 利用共词聚类分析探讨抗原CD44研究现状[J]. 中华医学图书情报杂志, 2002, 11(2): 1-3.
[23] (Zheng Huachuan, Yu Xiaoou, Xin Yan.Antigen CD44 with Clustered Analysis of Co-words: A Status Quo Investigation[J]. Chinese Journal of Medical Library and Information Science, 2002, 11(2): 1-3.)
[24] Endres D M, Schindelin J E.A New Metric for Probability Distributions[J]. IEEE Transactions on Information Theory, 2003, 49(7): 1858-1860.
[1] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[2] Zixuan Wang,Xiaoqiu Le,Yuanbiao He. Recognizing Core Topic Sentences with Improved TextRank Algorithm Based on WMD Semantic Similarity[J]. 数据分析与知识发现, 2017, 1(4): 1-8.
[3] Dongsheng Zhai,Wenhao Cai,Jie Zhang,Zhenfei Li. An Improved Method of Semantic Similarity Calculation of Chinese Trademarks[J]. 数据分析与知识发现, 2017, 1(11): 19-28.
[4] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[5] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[6] Huang Xiaoxi, Zhang Hua, Lu Bei, Wang Rongbo, Wu Ting. An Approach to Chinese Metaphor Identification Based on Word Abstractness[J]. 现代图书情报技术, 2015, 31(4): 34-40.
[7] Liu Huailiang, Du Kun, Qin Chunxiu. Research on Chinese Text Categorization Based on Semantic Similarity of HowNet[J]. 现代图书情报技术, 2015, 31(2): 39-45.
[8] Fan Xuexue, Wang Zhirong, Xu Wu, Liang Yin, Ma Xiaohu. Research on Semantic Similarity Estimation Algorithm of Medical Terminology Based on Medical Ontology[J]. 现代图书情报技术, 2015, 31(12): 57-64.
[9] Hu Jiming, Xiao Lu. Semantic Incremental Improvement on Vector Space Model for Text Modeling[J]. 现代图书情报技术, 2014, 30(10): 49-55.
[10] He Chao, Zhang Yufeng. Research on Business Intelligence Link Analysis Algorithm Combining Semantic Similarity[J]. 现代图书情报技术, 2013, 29(3): 27-32.
[11] Sun Haixia, Li Junlian, Li Danya, Wu Yingjie, Li Xiaoying. The Study on Semantic Mapping from Free Word to Subject Headings Based on Semantic System of CMeSH[J]. 现代图书情报技术, 2013, 29(11): 46-51.
[12] Ma Junhong. A Staged and Integrated Semantic Similarity Algorithm of Text[J]. 现代图书情报技术, 2013, 29(10): 20-26.
[13] Wang Li. Dynamic Faceted Method Based on Keyword Chains[J]. 现代图书情报技术, 2012, 28(7): 76-81.
[14] Xing Meifeng. Study on Solution to Redundancy of Scientific Literature Keywords[J]. 现代图书情报技术, 2012, 28(1): 34-39.
[15] Xu Jian Zhang Zhixiong Xiao Zhuo Deng Zhaojun. Review on Scientific and Technical Term Semantic Similarity Measure Methods[J]. 现代图书情报技术, 2010, 26(7/8): 51-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938