Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (5): 64-71    DOI: 10.11925/infotech.1003-3513.2016.05.08
Orginal Article Current Issue | Archive | Adv Search |
Research on the Brand Switching Intention of Online Product Reviews Based on the Fuzzy Sentiment Calculation
Zhang Yanfeng1,2(),Li He1,Peng Lihui2
1School of Management, Jilin University, Changchun 130022, China
2Library of Changsha Normal University, Changsha 410100, China
Download: PDF(590 KB)   HTML ( 64
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] We explore the changing of consumer’s favorite brands by analyzing online product reviews from a popular E-commerce platform in China. [Methods] First, we built a fuzzy sentiment dictionary for online product reviews based on brand switching intention model. Second, we defined rules for a Fuzzy Inference System to calculate customer brand switching intention and switching types. [Results] We successfully extracted vague sentimental terms from the online product reviews, and then categorized consumers’ intentions. [Limitations] The fuzzy sentiment dictionary was built with complex rules and required many time consuming follow-up amendments. [Conclusions] The proposed model can provide decisive information for online marketing and early warning systems.

Key wordsFuzzy sentiment      Fuzzy calculation      Online reviews      Comment mining      Brand switch     
Received: 16 December 2015      Published: 24 June 2016

Cite this article:

Zhang Yanfeng,Li He,Peng Lihui. Research on the Brand Switching Intention of Online Product Reviews Based on the Fuzzy Sentiment Calculation. New Technology of Library and Information Service, 2016, 32(5): 64-71.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2016.05.08     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2016/V32/I5/64

[1] 中国互联网信息中心. 2014年中国网络购物市场研究报告[EB/OL]. [2015-09-16]. .
[1] (CNNIC. Research Report on China’s Online Shopping Market in 2014 [EB/OL]. [2015-09-16].
[2] Utz S, Kerkhof P, Van Den Bos J. Consumers Rule: How Consumer Reviews Influence Perceived Trustworthiness of Online Stores[J]. Electronic Commerce Research and Applications, 2012, 11(1): 49-58.
[3] 曾润喜, 王君泽, 杜洪涛. 新媒体时代网络评论观点信息发现机制研究[J]. 图书情报工作, 2015, 59(14): 111-116, 148.
[3] (Zeng Runxi, Wang Junze, Du Hongtao.Research on Opinion Extraction Mechanism of Web Information Reviews in New Media Times[J]. Library and Information Service, 2015, 59(14): 111-116, 148.)
[4] Dellarocas C, Zhang X, Awad N F.Exploring the Value of Online Product Reviews in Forecasting Sales: The Case of Motion Pictures[J]. Journal of Interactive Marketing, 2007, 21(4): 23-45.
[5] Rose S, Clark M, Samouel P, et al.Online Customer Experience in E-Retailing: An Empirical Model of Antecedents and Outcomes[J]. Journal of Retailing, 2012, 88(2): 308-322.
[6] 钱颖, 王西子, 倪君彧. 转移成本在在线用户的忠诚度中的研究评述[J]. 情报杂志, 2015, 34(3): 203-207.
[6] (Qian Ying,Wang Xizi,Ni Junyu.Review of Research on the Role of Switching Costs in Loyalty of Online Users[J]. Journal of Intelligence, 2015, 34(3): 203-207.)
[7] Mudambi S M, Schuff D.What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com[J]. MIS Quarterly, 2010, 34(1): 185-200.
[8] 郝媛媛, 叶强, 李一军. 基于影评数据的在线评论有用性影响因素研究[J]. 管理科学学报, 2010, 13(8): 78-88, 96.
[8] (Hao Yuanyuan, Ye Qiang, Li Yijun.Research on Online Impact Factors of Customer Reviews Usefulness Based on Movie Reviews Data[J]. Journal of Management Sciences in China, 2010, 13(8): 78-88, 96.)
[9] 那日萨, 李媛. 基于在线评论的消费者模糊情感计算与推理[J]. 情报学报, 2011, 30(4): 412-423.
[9] (Zhao Narisa, Li Yuan.Online-Review-Based Fuzzy Computing and Inference of Consumer Sentiment[J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(4): 412-423.)
[10] 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报: 理学版, 2014, 49(12): 7-11.
[10] (Song Shuang, Zhao Narisa, Zhang Yang.Approximate Reasoning Research of Customers Brand Switching Intention Based on Online Reviews[J]. Journal of Shandong University: Natural Science, 2014, 49(12): 7-11.)
[11] Bhattacherjee A, Perols J, Sanford C.Information Technology Continuance: A Theoretic Extension and Empirical Test[J]. Journal of Computer Information Systems, 2008, 49(1): 17-26.
[12] HowNet [EB/OL]. [2015-11-10]. .
[13] 数据堂. 台湾大学NTUSD-简体中文情感极性词典[EB/OL]. [2015-11-11]. .
[13] (Data Tang. Taiwan University-The Polarity of Simplified Chinese Emotional Dictionary [EB/OL]. [2015-11-11].
[14] 董丽丽, 赵繁荣, 张翔. 基于领域本体、情感词典的商品评论倾向性分析[J]. 计算机应用与软件, 2014, 31(12): 104-108, 194.
[14] (Dong Lili, Zhao Fanrong, Zhang Xiang.Analysing Propensity of Product Reviews Based on Domain Ontology and Sentiment Lexicon[J]. Computer Applications and Software, 2014, 31(12): 104-108, 194.)
[15] 娄德成, 姚天昉. 汉语句子语义极性分析和观点抽取方法的研究[J]. 计算机应用, 2006, 26(11): 2622-2625.
[15] (Lou Decheng, Yao Tianfang.Semantic Polarity Analysis and Opinion Mining on Chinese Review Sentences[J]. Computer Applications, 2006, 26(11): 2622-2625.)
[16] LTP-Cloud.语言技术平台云[EB/OL]. [2015-11-21]. .
[16] (LTP-Cloud. Language Technology Platform Cloud [EB/OL]. [2015-11-21].
[17] 何跃, 宋灵犀, 齐丽云. 负面事件中的品牌网络口碑溢出效应研究——以“圆通夺命快递”事件为例[J]. 现代图书情报技术, 2015(10): 58-64.
[17] (He Yue, Song Lingxi, Qi Liyun.Spillover Effect of Internet Word of Mouth in Negative Events——Take the “Deadly Yuantong Express” Event for an Example[J]. New Technology of Library and Information Service, 2015(10): 58-64.)
[18] Ganesh J, Arnold M J, Reynolds K E.Understanding the Customer Base of Service Providers: An Examination of the Differences Between Switchers and Stayers[J]. Journal of Marketing, 2000, 64(3): 65-87.
[19] 蔡晓珍, 徐健, 吴思竹. 面向情感分析的用户评论过滤模型研究[J]. 现代图书情报技术, 2014(4): 58-64.
[19] (Cai Xiaozhen, Xu Jian, Wu Sizhu.Research on Filter Model of Customer Review for Sentiment Analysis[J]. New Technology of Library and Information Service, 2014(4): 58-64.)
[1] Hui Li,Yunfeng Hu. Analyzing Online Reviews with Dynamic Sentiment Topic Model[J]. 数据分析与知识发现, 2017, 1(9): 74-82.
[2] Yanfeng Zhang,He Li,Lihui Peng,Litie Hou. Identifying Useful Online Reviews with Semantic Feature Extraction[J]. 数据分析与知识发现, 2017, 1(12): 74-83.
[3] Gao Song,Wang Hongwei,Feng Gang,Wang Wei. Review of Comparative Opinions Mining Studies of Online Comments[J]. 现代图书情报技术, 2016, 32(10): 1-12.
[4] Li Zhiyu. Study on the Reviews Effectiveness Sequencing Model of Online Products[J]. 现代图书情报技术, 2013, (4): 62-68.
[5] Zhang Hongbin, Li Guangli. Research on Sentiment Orientation Analysis of Product Online Reviews[J]. 现代图书情报技术, 2012, (10): 61-66.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn