Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (7-8): 60-69    DOI: 10.11925/infotech.1003-3513.2016.07.08
Orginal Article Current Issue | Archive | Adv Search |
Discover Emerging Technologies with LDA Model
Ren Zhijun1,2(),Qiao Xiaodong1,Zhang Jiangtao2
1Institute of Scientific & Technical Information of China, Beijing 100038, China
2The China Patent Information Center, The State Intellectual Property Office, Beijing 100088, China
Download: PDF(2758 KB)   HTML ( 61
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] To identify emerging technologies from academic papers and patents. [Methods] We adopted the Latent Dirichlet Allocation (LDA) model to find technical topics and used the similarity theory to retrieve emerging technologies from the electric car data. [Results] The proposed method was more efficient than exisiting ones. It reduced the subjectivity of the experts’ evaluation and the amount of data to be analyzed. [Limitations] We did not include the expert scoring experiment in this study, thus, we could not compare the new model’s performance with those involving human judgements. [Conclusions] The proposed model could identify emerging technologies effectively and then reduce the document reading load of the experts.

Key wordsEmerging technology      Paper      Patent      Electric car      Technology similarity     
Received: 22 January 2016      Published: 29 September 2016

Cite this article:

Ren Zhijun,Qiao Xiaodong,Zhang Jiangtao. Discover Emerging Technologies with LDA Model. New Technology of Library and Information Service, 2016, 32(7-8): 60-69.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2016.07.08     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2016/V32/I7-8/60

[1] 乔治·戴, 保罗·休梅克. 沃顿论新兴技术管理[M]. 石莹等译. 北京: 华夏出版社, 2002.
[1] (Day G S, Schoemaker P.Towards Knowledge Services: Wharton on Mananging Emerging Technologies [M]. Translated by Shi Ying, et al. Beijing: Huaxia Publishing House, 2002.)
[2] 赵振元, 银路, 成红. 新兴技术对传统管理的挑战和特殊市场开拓的思路[J]. 中国软科学, 2004 (7): 72-77.
[2] (Zhao Zhenyuan, Yin Lu, Cheng Hong.The Challenge of Emerging Technology on Traditional Management and the Thought of Developping Special Market[J]. China Soft Science, 2004(7): 72-77.)
[3] 魏国平. 新兴技术管理策略研究—基于新兴技术特征的分类分析[D]. 杭州: 浙江大学, 2006.
[3] (Wei Guoping.Study on Emerging Technology Management Strategy - Classification Analysis Based on Features of Emerging Technology [D]. Hangzhou: Zhejiang University, 2006.)
[4] 谈毅, 黄燕丽. 基于过程的新兴技术规划与选择模型研究[J]. 科技管理研究, 2007, 27(8): 5-8.
[4] (Tan Yi, Huang Yanli.Study on the New Emerging Technology Planning and Choosing Model[J]. Science and Technology Management Research, 2007, 27(8): 5-8.)
[5] 黄鲁成, 卢文光. 基于属性综合评价系统的新兴技术识别研究[J]. 科研管理, 2009, 30(7): 190-194.
[5] (Huang Lucheng, Lu Wenguang.Study on the Identification of Emerging Technology by an Attribute Synthetic Measure Model[J]. Science Research Management, 2009, 30(7): 190-194.)
[6] Kostoff R N, Boylan B, Simons G R.Disruptive Technology Roadmaps[J]. Technological Forecasting & Social Change, 2004, 71(1): 141-159.
[7] 王凌燕, 方曙, 季培培. 利用专利文献识别新兴技术主题的技术框架研究[J]. 图书情报工作, 2011, 55(18): 74-78.
[7] (Wang Lingyan, Fang Shu, Ji Peipei.Using Patent Documents to Study the Technology Framework of Detecting Emerging Technology Topics[J]. Library and Information Service, 2011, 55(18): 74-78.)
[8] 李蓓, 陈向东. 基于专利引用耦合聚类的纳米领域新兴技术识别[J]. 情报杂志, 2015, 34(5): 35-40.
[8] (Li Bei, Chen Xiangdong.Identification of Emerging Technologies in Nanotechnology Based on Citing Coupling Clustering of Patents[J]. Journal of Intelligence, 2015, 34(5): 35-40.)
[9] Kim J, Hwang M, Jeong D H, et al.Technology Trends Analysis and Forecasting Application Based on Decision Tree and Statistical Feature Analysis[J]. Expert Systems with Applications, 2012, 39(16): 12618-12625.
[10] 任智军, 乔晓东, 徐硕, 等. 基于数据挖掘的技术机会发现模型研究[J]. 情报杂志, 2015, 34(6): 174-177.
[10] (Ren Zhijun, Qiao Xiaodong, Xu Shuo, et al.An Approach for Technology Opportunities Discovery Model Based on Data Mining[J]. Journal of Intelligence, 2015, 34(6): 174-177.)
[11] 殷蜀梅. 判断新兴研究趋势的技术框架研究[J]. 图书情报知识, 2008(3): 76-80.
[11] (Yin Shumei.A Study on the Technology Framework for Detecting Emerging Trend in Medical Research[J]. Document, Informaiton & Knowledge, 2008(3): 76-80.)
[12] Blei D M, Ng A Y, Jordan M I, et al.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[13] 郭道劝. 基于TRL的技术成熟度模型及评估研究[D]. 长沙: 国防科学技术大学, 2010.
[13] (Guo Daoquan.The Study of Technology Maturity Model and Assessment Based on TRL [D]. Changsha: National University of Defense Technology, 2010.)
[14] 杨良选. 技术成熟度多维评估模型研究[D]. 长沙: 国防科学技术大学, 2011.
[14] (Yang Liangxuan.Research on Technology Maturity Multi-Dimensional Assessment Model [D]. Changsha: National University of Defense Technology, 2011.)
[15] Jarvenpaa H, Makinen S J.An Empirical Study of the Existence of the Hype Cycle: A Case of DVD Technology [C]. In: Proceedings of 2008 IEEE International Engineering Management Conference. 2008.
[16] Lind J.Convergence: History of Term Usage and Lessons for Firm Strategists [A]. // The Anticipation of Converging Industries[M]. Springer London, 2004.
[17] Tammen H, Budde A P, Zucht H.Peptidomics Analysis of Human Blood Specimens for Biomarker Discovery[J]. Environmental Innovation and Societal Transitions, 2007, 7(5): 605-613.
[18] Jarvenpaa H, Makinen S J.Empirically Detecting the Hype Cycle with the Life Cycle Indicators: An Exploratory Analysis of Three Technologies [C]. In: Proceedings of the 2008 International Conference on Industrial Engineering and Engineering Management. 2008.
[19] Budde B, Alkemadeb F, Hekkert M.On the Relation Between Communication and Innovation Activities: A Comparison of Hybrid Electric and Fuel Cell Vehicles[J]. Environmental Innovation and Societal Transitions, 2013, 101: 1-15.
[20] Gartner Hype Cycle [EB/OL]. [2016-07-25]. .
[1] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[2] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[3] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[4] Xueying Wang,Hao Wang,Zixuan Zhang. Recognizing Semantics of Continuous Strings in Chinese Patent Documents[J]. 数据分析与知识发现, 2018, 2(5): 11-22.
[5] Yan Yu,Naixuan Zhao. Weighted Topic Model for Patent Text Analysis[J]. 数据分析与知识发现, 2018, 2(4): 81-89.
[6] Yan Yu,Naixuan Zhao. Choosing Stopwords for Patent Topic Analysis Based on Auxiliary Set[J]. 数据分析与知识发现, 2018, 2(11): 95-103.
[7] Shanshan Jia,Chang Liu,Lianying Sun,Xiaoan Liu,Tao Peng. Patent Classification Based on Multi-feature and Multi-classifier Integration[J]. 数据分析与知识发现, 2017, 1(8): 76-84.
[8] Shuying Li,Shu Fang. Review of Data Analysis Methods in Measuring Technology Fusion and Trend[J]. 数据分析与知识发现, 2017, 1(7): 2-12.
[9] Chaofan Yang,Zhonghua Deng,Xin Peng,Bin Liu. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[10] Dongsheng Zhai,Cheng Guo,Jie Zhang,Jun Xia. Recommending Potential R&D Partners Based on Patents[J]. 数据分析与知识发现, 2017, 1(3): 10-20.
[11] Dongsheng Zhai,Dengjin Hu,Jie Zhang,Xijun He,He Liu. Hierarchical Classification Model for Invention Patents[J]. 数据分析与知识发现, 2017, 1(12): 63-73.
[12] Jianhua Hou,Shuang Guo. Analyzing Emerging Issues with Technology Entropy Method Based on Patents: Case Study of Carbon Capture[J]. 数据分析与知识发现, 2017, 1(1): 55-63.
[13] Zhang Jinzhu,Zhang Xiaolin. Radical Innovation Identification Based on Topic Mutation of Scientific Knowledge Cited in Patents[J]. 现代图书情报技术, 2016, 32(7-8): 42-50.
[14] Li Xiaoying,Xia Guanghui,Li Danya. Finding Semantic Relations Among Subject Indexed Papers[J]. 现代图书情报技术, 2016, 32(7-8): 87-93.
[15] Wang Miping,Wang Hao,Deng Sanhong,Wu Zhixiang. Extracting Chinese Metallurgy Patent Terms with Conditional Random Fields[J]. 现代图书情报技术, 2016, 32(6): 28-36.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn