Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (9): 70-77    DOI: 10.11925/infotech.1003-3513.2016.09.09
Orginal Article Current Issue | Archive | Adv Search |
New Content Recommendation Service of Digital Literature
Liu Jian1(),Bi Qiang1,Liu Qingxu1,Wang Fu1,2
1School of Management, Jilin University, Changchun 130022, China
2Inner Mongolia University of Technology Library, Huhhot 010051, China
Download: PDF(740 KB)   HTML ( 31
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to improve the traditional content recommendation service of digital literature, which cannot fully exploit the semantic information of the literature. [Methods] First, we introduced the Ontology reasoning rules to the recommendation system, and then semantically extended the user’s query. Second, we calculated the similarity of the literature to rank. Finally, we recommend those top ranked literature to the users. [Results] The proposed algorithm can calculate the semantic similarity among literature and successful recommend documents to the users. [Limitations] Only examined the new method with relatively small data sets. [Conclusions] The proposed algorithm could effectively exploit the semantic information of target literature and offer a new way to recommend digital resource to the users.

Key wordsDigital literature      Service recommendation      Ontology reasoning      Semantic similarity     
Received: 09 May 2016      Published: 19 October 2016

Cite this article:

Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature. New Technology of Library and Information Service, 2016, 32(9): 70-77.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2016.09.09     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2016/V32/I9/70

[1] 马炎. 一种自适应的协作过滤图书推荐系统研究[J]. 情报杂志, 2008, 27(5): 105-109.
[1] (Ma Yan.Research on the Adaptive Collaborative Filtering Recommendation System[J]. Journal of Information, 2008, 27(5): 105-109.)
[2] 董坤. 基于协同过滤算法的高校图书馆图书推荐系统研究[J]. 现代图书情报技术, 2011(11): 44-47.
[2] (Dong Kun.Research of Personalized Book Recommender System of University Library Based on Collaborative Filter[J]. New Technology of Library and Information Service, 2011(11): 44-47.)
[3] 吴志强, 马慧娟. 协同信息推荐技术及其在数字图书馆中的应用研究述评[J]. 图书情报工作, 2012, 55(19): 122-127.
[3] (Wu Zhiqiang, Ma Huijuan.Review on Researches About the Application of Collaborative Information Recommendation Technologies in Digital Libraries[J]. Library and Information Service, 2012, 55(19): 122-127.)
[4] 熊拥军. 数字图书馆个性化服务资源推荐模式分析[J]. 图书馆, 2014(2): 132-134.
[4] (Xiong Yongjun.The Model Analysis of Personalized Information Recommendation Service in Digital Library[J]. Library, 2014(2): 132-134.)
[5] Koren Y, Bell R, Volinsky C.Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8): 30-37.
[6] Ghazarian S, Nematbakhsh M A.Enhancing Memory-based Collaborative Filtering for Group Recommender Systems[J]. Expert Systems with Applications, 2015, 42(7): 3801-3812.
[7] Zhu Z, Wang J Y.Book Recommendation Service by Improved Association Rule Mining Algorithm [C]. In: Proceedings of the 6th International Conference on Machine Learning and Cybernetics. 2007: 19-22.
[8] Giseli Rabello Lopes, Maria Aparecida Martins Souto, Leandro Krug Wives, et al. A Personalized Recommender System for Digital Libraries [C]. In: Proceedings of the 14th Brazilian Symposium on Multimedia and the Web. 2008: 59-66.
[9] Amini B, Ibrahim R, Othman M S, et al.Incorporating Scholar’s Background Knowledge into Recommender System for Digital Libraries [C]. In: Proceedings of the 5th Malaysian Conference in Software Engineering (MySEC). 2011: 516-523.
[10] Will T C, Srinivasan A, Wu Y F B. Search Personalization: Knowledge-Based Recommendation in Digital Libraries [C]. In: Proceedings of Americas Conference on Information Systems. 2009: 728-735.
[11] IJntema W, Goossen F.Ontology-Based News Recommendation [C]. In: Proceedings of the 1st International Workshop on Data Semantics, Switzerland. 2010: 22-26.
[12] 曾春, 邢春晓, 周立柱. 个性化服务技术综述[J]. 软件学报, 2002, 13(10): 1592-1601.
[12] (Zeng Chun, Xing Chunxiao, Zhou Lizhu.A Survey of Personalization Technology[J]. Journal of Software, 2002, 13(10): 1592-1601.)
[13] Chen Y J, Chu H C, Chen Y M, et al.Adapting Domain Ontology for Personalized Knowledge Search and Recommendation[J]. Information & Management, 2013, 50(6): 285-303.
[14] Wu H, Yue K, Pei Y, et al.Collaborative Topic Regression with Social Trust Ensemble for Recommendation in Social Media Systems[J]. Knowledge-Based Systems, 2016, 97(1): 111-122.
[15] Isinkaye F O, Folajimi Y O, Ojokoh B A.Recommendation Systems: Principles, Methods and Evaluation[J]. Egyptian Informatics Journal, 2015, 16(3): 261-273.
[16] 吴正洋, 汤庸, 方家轩, 等. 一种基于本体语义相似度的协同过滤推荐方法[J]. 计算机科学, 2015, 42(9): 204-207, 225.
[16] (Wu Zhengyang, Tang Yong, Fang Jiaxuan, et al.Collaborative Filtering Recommendation Algorithm Based on Ontology Semantic Similarity[J]. Computer Science, 2015, 42(9): 204-207, 225.)
[17] 刘宏哲, 须德. 基于本体的语义相似度和相关度计算研究综述[J]. 计算机科学, 2012, 39(2): 8-13.
[17] (Liu Hongzhe, Xu De.Ontology Based Semantic Similarity and Relatedness Measures Review[J]. Computer Science, 2012, 39(2): 8-13.)
[18] 何超, 张玉峰. 基于本体的馆藏数字资源语义聚合与可视化研究[J]. 情报理论与实践, 2013, 36(10): 73-76.
[18] (He Chao, Zhang Yufeng.Research on Semantic Aggregation and Visualization of Library Digital Resources Based on Ontology[J]. Information Studies: Theory & Application, 2013, 36(10): 73-76.)
[19] 乔冬春, 刘晓燕, 付晓东, 等. 一种基于本体的推荐系统模型[J]. 计算机工程, 2014, 40(11): 282-287.
[19] (Qiao Dongchun, Liu Xiaoyan, Fu Xiaodong, et al.An Ontology-based Recommendation System Model[J]. Computer Engineering, 2014, 40(11): 282-287.)
[20] Chen R C, Huang Y H, Bau C T, et al.A Recommendation System Based on Domain Ontology and SWRL for Anti-diabetic Drugs Selection[J]. Expert Systems with Applications, 2012, 39(4): 3995-4006.
[21] Vesin B, Ivanovi? M, Kla?nja-Mili?evi? A, et al.Protus 2. 0: Ontology-based Semantic Recommendation in Programming Tutoring System[J]. Expert Systems with Applications, 2012, 39(15): 12229-12246.
[22] Torshizi A D, Zarandi M H F, Torshizi G D, et al. A Hybrid Fuzzy-ontology Based Intelligent System to Determine Level of Severity and Treatment Recommendation for Benign Prostatic Hyperplasia[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1): 301-313.
[23] Hsu I C.Integrating Ontology Technology with Folksonomies for Personalized Social Tag Recommendation[J]. Applied Soft Computing, 2013, 13(8): 3745-3750.
[24] 肖敏. 基于领域本体的电子商务推荐技术研究[D]. 武汉: 武汉理工大学, 2009.
[24] (Xiao Min.Research on Electronic Commerence Recommendation Technology Base on Domin Ontology [D]. Wuhan: Wuhan University of Technology, 2009.)
[25] 李言则. 基于课程本体的学习内容个性化推荐的研究与应用[D]. 武汉: 华中师范大学, 2013.
[25] (Li Yanze.Research and Application of Personalized Leaning Content Recommendation Based on Course Ontology [D]. Wuhan: Central China Normal University, 2013.)
[26] Al-Nazer A, Helmy T, Al-Mulhem M.User’s Profile Ontology-based Semantic Framework for Personalized Food and Nutrition Recommendation[J]. Procedia Computer Science, 2014, 32: 101-108.
[27] Yu Y H, Kim J H, Shin K, et al.Recommendation System Using Location-based Ontology on Wireless Internet: An Example of Collective Intelligence by Using ‘Mashup’ Applications[J]. Expert Systems with Applications, 2009, 36(9): 11675-11681.
[28] Weng S S, Chang H L.Using Ontology Network Analysis for Research Document Recommendation[J]. Expert Systems with Applications, 2008, 34(3): 1857-1869.
[29] 龚资. 基于OWL描述的本体推理研究[D]. 长春: 吉林大学, 2007.
[29] (Gong Zi.Research on Ontology Reasoning Based on OWL [D]. Changchun: Jilin University, 2007.)
[30] Hebeler J, Fisher M, Blace R, et al.Semantic Web Programming [M]. Wiley Publishing, Inc. 2009.
[31] Hayes P. RDF Semantics [OL]. [2016-04-04]. .
[32] Ter Horst H J. Completeness, Decidability and Complexity of Entailment for RDF Schema and a Semantic Extension Involving the OWL Vocabulary[J]. Web Semantics: Science, Services and Agents on the World Wide Web, 2005, 3(2-3): 79-115.
[33] Horrock I, Patel-Schneider P F. Reducing OWL Entailment to Description Logic Satisfiability [C]. In: Proceedings of the International Semantic Web Conference. 2005: 345-357.
[34] Singh S, Siddiqui T J.Role of Semantic Relations in Hindi Word Sense Disambiguation[J]. Procedia Computer Science, 2015, 46: 240-248.
[35] Alonso I, Contreras D.Evaluation of Semantic Similarity Metrics Applied to the Automatic Retrieval of Medical Documents: An UMLS Approach[J]. Expert Systems with Applications, 2016, 44(C): 386-399.
[36] Hussain S F, Suryani A.On Retrieving Intelligently Plagiarized Documents Using Semantic Similarity[J]. Engineering Applications of Artificial Intelligence, 2015, 45: 246-258.
[37] Chang J Y, Lee K M.Large Margin Learning of Hierarchical Semantic Similarity for Image Classification[J]. Computer Vision and Image Understanding, 2015, 132: 3-11.
[38] Zhang X, Liu C.Image Annotation Based on Feature Fusion and Semantic Similarity[J]. Neurocomputing, 2015, 149: 1658-1671.
[39] Hassan H, Hassan A, Emam O.Unsupervised Information Extraction Approach Using Graph Mutual Reinforcement[C]. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. 2006: 501-508.
[40] Kalloubi F, Nfaoui E H, Beqqali O E.Microblog Semantic Context Retrieval System Based on Linked Open Data and Graph-based Theory[J]. Expert Systems with Applications, 2016, 53: 138-148.
[41] Bae M, Kang S, Oh S.Semantic Similarity Method for Keyword Query System on RDF[J]. Neurocomputing, 2014, 146: 264-275.
[42] Rada R, Mili H, Bicknell E, et al.Development and Application of a Metric on Semantic Nets[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(1): 17-30.
[43] Leacok C, Chodorov M.Combining Local Context and WordNet Similarity for Word Sense Identification [A]. // Fellbaum C, Miller G. WordNet: An Electronic Lexical Database and Some of Its Applications [M]. MIT Press, 1998: 265-283.
[44] Lord P W, Stevens R D, Brass A, et al.Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation[J]. Bioinformatics, 2003, 19(10): 1275-1283.
[45] Tversky A.Feature of Similarity[J]. Psychological Review, 1977, 84(4): 327-352.
[46] 张效祥. 计算机科学技术百科全书[M]. 北京: 清华大学出版社, 2005.
[46] (Zhang Xiaoxiang.Encyclopedia of computer science and technology [M]. Beijing: Tsinghua University Press, 2005.)
[47] 国家图书馆《中国图书馆分类书》编辑委员会. 中国图书馆分类法[M]. 北京: 国家图书馆出版社, 2010.
[47] (Editorial Board of《Chinese Library Classification》 of National Library. Chinese Library Classification [M]. Beijing: National Library of China Publishing House, 2010.)
[48] Zhou T, Kuscsik Z, Liu J G, et al.Solving the Apparent Diversity-accuracy Dilemma of Recommender Systems[J]. Proceedings of the National Academy of Sciences, 2010, 107(10): 4511-4517.
[1] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[2] Zixuan Wang,Xiaoqiu Le,Yuanbiao He. Recognizing Core Topic Sentences with Improved TextRank Algorithm Based on WMD Semantic Similarity[J]. 数据分析与知识发现, 2017, 1(4): 1-8.
[3] Dongsheng Zhai,Wenhao Cai,Jie Zhang,Zhenfei Li. An Improved Method of Semantic Similarity Calculation of Chinese Trademarks[J]. 数据分析与知识发现, 2017, 1(11): 19-28.
[4] Ba Zhichao,Li Gang,Zhu Shiwei. Similarity Measurement of Research Interests in Semantic Network[J]. 现代图书情报技术, 2016, 32(4): 81-90.
[5] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[6] Liang Yiduo, Zhai Jun. Research on Application of Ontology Reasoning in Linkage Discovery of Linked Data[J]. 现代图书情报技术, 2015, 31(4): 87-95.
[7] Liu Huailiang, Du Kun, Qin Chunxiu. Research on Chinese Text Categorization Based on Semantic Similarity of HowNet[J]. 现代图书情报技术, 2015, 31(2): 39-45.
[8] Bi Qiang, Liu Jian. Research on the Service Recommendation of the Content of Digital Literature Resources[J]. 现代图书情报技术, 2015, 31(12): 21-27.
[9] Fan Xuexue, Wang Zhirong, Xu Wu, Liang Yin, Ma Xiaohu. Research on Semantic Similarity Estimation Algorithm of Medical Terminology Based on Medical Ontology[J]. 现代图书情报技术, 2015, 31(12): 57-64.
[10] Li Hongmei, Ding Shengchun. Research on Complex Product Design-Oriented Ontology Reasoning[J]. 现代图书情报技术, 2014, 30(9): 8-14.
[11] Hu Jiming, Xiao Lu. Semantic Incremental Improvement on Vector Space Model for Text Modeling[J]. 现代图书情报技术, 2014, 30(10): 49-55.
[12] He Chao, Zhang Yufeng. Research on Business Intelligence Link Analysis Algorithm Combining Semantic Similarity[J]. 现代图书情报技术, 2013, 29(3): 27-32.
[13] Sun Haixia, Li Junlian, Li Danya, Wu Yingjie, Li Xiaoying. The Study on Semantic Mapping from Free Word to Subject Headings Based on Semantic System of CMeSH[J]. 现代图书情报技术, 2013, 29(11): 46-51.
[14] Ma Junhong. A Staged and Integrated Semantic Similarity Algorithm of Text[J]. 现代图书情报技术, 2013, 29(10): 20-26.
[15] Wang Li. Dynamic Faceted Method Based on Keyword Chains[J]. 现代图书情报技术, 2012, 28(7): 76-81.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn