Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (10): 81-90    DOI: 10.11925/infotech.1003-3513.2016.10.09
Orginal Article Current Issue | Archive | Adv Search |
Identifying Technology Opportunities with Anomaly Detection Technique
Zhai Dongsheng,Guo Cheng(),Zhang Jie,Li Dengjie
School of Economics and Management, Beijing University of Technology, Beijing 100024, China
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a framework to effectively identify technology opportunities with anomaly detection technique. [Methods] First, we constructed a similarity matrix and conducted multidimensional scaling analysis. Second, we identified potential technology opportunity from patents based on a variety of anomaly detection algorithm. Finally, we extracted the possible breakthroughs with the help of TRIZ’s laws of technology system evolution. [Results] We analyzed patent data from the DII database and then identified technology opportunities in different phases of the laser lithography field. We found that technology opportunities identified by the proposed framework became mainstream technologies later. [Limitations] The objectiveness and accuracy of the new method needs to be improved. [Conclusions] The proposed framework based on anomaly detection could effectively identify technology opportunities.

Key wordsTechnology opportunity      Anomaly detection      Patent      TRIZ     
Received: 29 May 2016      Published: 23 November 2016

Cite this article:

Zhai Dongsheng,Guo Cheng,Zhang Jie,Li Dengjie. Identifying Technology Opportunities with Anomaly Detection Technique. New Technology of Library and Information Service, 2016, 32(10): 81-90.

URL:     OR

[1] 包昌火, 谢新洲. 竞争情报与企业竞争力[M]. 北京: 华夏出版社, 2001.
[1] (Bao Changhuo, Xie Xinzhou.Competitive Intelligence and Enterprise Competitive Power [M]. Beijing: Huaxia Publishing House, 2001.)
[2] Schwartz P.Technological Innovation Opportunities[J]. Computers and People, 1974, 23(5): 33.
[3] Porter A L, Detampel M J.Technology Opportunities Analysis[J]. Technological Forecasting & Social Change, 1995, 49(3): 237-255.
[4] Yoon B, Park Y.A Systematic Approach for Identifying Technology Opportunities: Keyword-based Morphology Analysis[J]. New England Journal of Medicine, 2005, 72(2): 145-160.
[5] Lee S, Yoon B, Park Y.An Approach to Discovering New Technology Opportunities: Keyword-based Patent Map Approach[J]. Technovation, 2009, 29(6): 481-497.
[6] Yoon J, Kim K.Detecting Signals of New Technological Opportunities Using Semantic Patent Analysis and Outlier Detection[J]. Scientometrics, 2012, 90(2): 445-461.
[7] Lee Y, Kim S Y, Song I, et al.Technology Opportunity Identification Customized to the Technological Capability of SMEs Through Two-stage Patent Analysis[J]. Scientometrics, 2014, 100(1): 227-244.
[8] Yoon B, Park I, Coh B Y.Exploring Technological Opportunities by Linking Technology and Products: Application of Morphology Analysis and Text Mining[J]. Technological Forecasting & Social Change, 2014, 86: 287-303.
[9] Yoon J, Park H, Seo W, et al.Technology Opportunity Discovery (TOD) from Existing Technologies and Products: A Function-based TOD Framework[J]. Technological Forecasting & Social Change, 2015, 100: 153-167.
[10] 李保明. 技术机会与技术创新的决策[J]. 科学管理研究, 1990, 8(5): 61-62.
[10] (Li Baoming.Decision of Technological Opportunities and Technological Innovation[J]. Researches in Science Management, 1990, 8(5): 61-62.)
[11] 李辉, 乔晓东. 基于科技文献的技术机会分析方法初探[J]. 情报杂志, 2007, 26(5): 74-76.
[11] (Li Hui, Qiao Xiaodong.The Technology Opportunity Analysis Based on Science & Technology Document[J]. Journal of Information, 2007, 26(5): 74-76.)
[12] 黄鲁成, 蔡爽. 基于专利的判断技术机会的方法及实证研究[J]. 科学学研究, 2010, 28(2): 215-220.
[12] (Huang Lucheng, Cai Shuang.An Empirical Study on the Evaluation of the Technical Opportunity Based on the Patents[J]. Studies in Science of Science, 2010, 28(2): 215-220.)
[13] 张妍. 市场创新活动中的技术机会[J]. 科技管理研究, 2011(3): 31-34.
[13] (Zhang Yan.Technological Opportunities in the Market Innovation Activities[J]. Science and Technology Management Research, 2011(3): 31-34.)
[14] 吕一博, 康宇航, 王淑娟. 基于共现分析的技术机会发现与可视化识别[J]. 科研管理, 2012, 33(4): 80-85.
[14] (Lv Yibo, Kang Yuhang, Wang Shujuan.Visualized Identification and Discovery of Technology Opportunities Based on Co-occurrence Analysis[J]. Science Research Management, 2012, 33(4): 80-85.)
[15] 潘东华, 徐珂珂. 基于共词分析的技术机会分析[J]. 科研管理, 2014, 35(4): 10-17.
[15] (Pan Donghua, Xu Keke.Technology Opportunity Analysis Based on Co-word Analysis[J]. Science Research Management, 2014, 35(4): 10-17.)
[16] 马婷婷, 汪雪锋, 朱东华, 等. 基于专利的技术机会分析方法研究[J]. 科学学研究, 2014, 32(3): 334-342.
[16] (Ma Tingting, Wang Xuefeng, Zhu Donghua, et al.Research on Technology Opportunity Analysis Based on Patents[J]. Studies in Science of Science, 2014, 32(3): 334-342.)
[17] 汪雪锋, 李兵, 许幸荣, 等. 基于形态分析法的创新导图构建及应用研究[J]. 科学学研究, 2014, 32(2): 178-183.
[17] (Wang Xuefeng, Li Bing, Xu Xingrong, et al.Research on Construction and Application of Innovation Mapping Based on Morphology Analysis[J]. Studies in Science of Science, 2014, 32(2): 178-183.)
[18] 任智军, 乔晓东, 徐硕, 等. 基于数据挖掘的技术机会发现模型研究[J]. 情报杂志, 2015, 34(6): 174-177.
[18] (Ren Zhijun, Qiao Xiaodong, Xu Shuo, et al.An Approach for Technology Opportunities Discovery Model Based on Data Mining[J]. Journal of Information, 2015, 34(6): 174-177.)
[19] 郭俊芳, 汪雪锋, 李乾瑞, 等. 一种新型的技术形态识别方法——基于SAO语义挖掘方法[J]. 科学学研究, 2016, 34(1): 13-21.
[19] (Guo Junfang, Wang Xuefeng, Li Qianrui, et al.A New Method to Identify Technology Morphology: SAO-based Semantic Analysis Approach[J]. Studies in Science of Science, 2016, 34(1): 13-21.)
[20] Duan L, Xu L, Liu Y, et al.Cluster-based Outlier Detection[J]. Annals of Operations Research, 2009, 168(1): 151-168.
[21] 张晓惠, 林柏钢. 基于特征选择和多分类支持向量机的异常检测[J]. 通信学报, 2009, 30(10): 68-73.
[21] (Zhang Xiaohui, Lin Bogang.Anomaly Detection Based on Feature Selection and Multi-class Support Vector Machines[J]. Journal on Communications, 2009, 30(10): 68-73.)
[22] Ramaswamy S, Rastogi R, Shim K.Efficient Algorithms for Mining Outliers from Large Data Sets[J]. ACM SIGMOD Record, 2000, 29(2): 427-438.
[23] 谭庞宁. 数据挖掘导论: 完整版[M]. 范明, 范宏建译. 第2版. 北京: 人民邮电出版社, 2011: 411-413.
[23] (Tan Pangning.Introduction to Data Mining [M]. Translated by Fan Ming, Fan Hongjian. The 2nd Edition. Beijing: The People’s Posts and Telecommunications Press, 2011: 411-413.)
[24] Breunig M M, Kriegel H P, Ng R T, et al.LOF: Identifying Density-based Local Outliers[J]. ACM SIGMOD Record, 2000, 29(2): 93-104.
[25] Ester M, Kriegel H P, Jiirg S, et al.A Density Based Algorithm for Discovering Clusters in Large Spatial Databases [C]. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996.
[26] 郭庆琳, 李艳梅, 唐琦. 基于VSM的文本相似度计算的研究[J]. 计算机应用研究, 2008, 25(11): 3256-3258.
[26] (Guo Qinglin, Li Yanmei, Tang Qi.Similarity Computing of Documents Based on VSM[J]. Application Research of Computers, 2008, 25(11): 3256-3258.)
[27] 储节旺, 闫士涛. 知识管理学科体系研究(下)——聚类分析和多维尺度分析[J]. 情报理论与实践, 2012, 35(3): 5-9.
[27] (Chu Jiewang, Yan Shitao.Research on the System of Knowledge Management — Cluster Analysis and Multidimensional Scaling Analysis[J]. Information Studies: Theory & Application, 2012, 35(3): 5-9.)
[28] 程序, 于海燕. TRIZ理论在专利技术路线图制定中的应用研究[J]. 情报学报, 2012, 31(10): 1045-1051.
[28] (Cheng Xu, Yu Haiyan.Study on Application of TRIZ in Patent Technology Roadmapping[J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(10): 1045-1051.)
[1] Guo Xu,Qi Ruihua. Identifying Authorship with Novelty Detection Method[J]. 数据分析与知识发现, 2020, 4(4): 56-62.
[2] Hu Yongjun,Wei Tingting,Dou Zixin,Huang Yunyin,Liang Ruicheng,Chang Huiyou. Tech-Development Path of Knife-Scissor Industry in Guangdong with TRIZ Analysis of Patents[J]. 数据分析与知识发现, 2020, 4(2/3): 101-109.
[3] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[4] Yan Yu,Lei Chen,Jinde Jiang,Naixuan Zhao. Measuring Patent Similarity with Word Embedding and Statistical Features[J]. 数据分析与知识发现, 2019, 3(9): 53-59.
[5] Jianhua Hou,Pan Liu. Measuring Tech-Entropy of System Evolution: An Empirical Study of Patents[J]. 数据分析与知识发现, 2019, 3(8): 21-29.
[6] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[7] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[8] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[9] Jinzhu Zhang,Yue Wang,Yiming Hu. Analyzing Sci-Tech Topics Based on Semantic Representation of Patent References[J]. 数据分析与知识发现, 2019, 3(12): 52-60.
[10] Wang Xueying,Wang Hao,Zhang Zixuan. Recognizing Semantics of Continuous Strings in Chinese Patent Documents[J]. 数据分析与知识发现, 2018, 2(5): 11-22.
[11] Yu Yan,Zhao Naixuan. Weighted Topic Model for Patent Text Analysis[J]. 数据分析与知识发现, 2018, 2(4): 81-89.
[12] Yu Yan,Zhao Naixuan. Choosing Stopwords for Patent Topic Analysis Based on Auxiliary Set[J]. 数据分析与知识发现, 2018, 2(11): 95-103.
[13] Jia Shanshan,Liu Chang,Sun Lianying,Liu Xiaoan,Peng Tao. Patent Classification Based on Multi-feature and Multi-classifier Integration[J]. 数据分析与知识发现, 2017, 1(8): 76-84.
[14] Li Shuying,Fang Shu. Review of Data Analysis Methods in Measuring Technology Fusion and Trend[J]. 数据分析与知识发现, 2017, 1(7): 2-12.
[15] Zhai Dongsheng,Guo Cheng,Zhang Jie,Xia Jun. Recommending Potential R&D Partners Based on Patents[J]. 数据分析与知识发现, 2017, 1(3): 10-20.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938