Please wait a minute...
New Technology of Library and Information Service  2016, Vol. 32 Issue (11): 44-53    DOI: 10.11925/infotech.1003-3513.2016.11.06
Orginal Article Current Issue | Archive | Adv Search |
Using Product Reviews to Analyze Sentiment Fluctuation of Consumer
Lin Yuanyuan,Zhan Hongfei(),Yu Junhe,Li Changjiang,Zhang Fan
The Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
Download: PDF(1573 KB)   HTML ( 54
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper establishes a model to analyze the sentiment fluctuation of consumers with online product reviews. [Methods] We constructed the model with product review mining and sentiment analysis techniques. And also examined the influence of conjunctions to sentence sentimental tendentiousness and then calculated their weights. [Results] The proposed model effectively analysed online reviews of one mobile phone posted on Jingdong and Zhongguancun Online from November 2013 to January 2015. [Limitations] Only included the total number and frequency of product feature keywords from reviews posted in neighboring time slots. [Conclusions] The proposed model could effectively analyze the developing trends and reasons of consumer sentiment fluctuation over a period of time, which provides valuable information to enterprise decision making.

Key wordsData analysis      Text mining      Emotional fluctuation analysis model     
Received: 29 June 2016      Published: 20 December 2016

Cite this article:

Lin Yuanyuan,Zhan Hongfei,Yu Junhe,Li Changjiang,Zhang Fan. Using Product Reviews to Analyze Sentiment Fluctuation of Consumer. New Technology of Library and Information Service, 2016, 32(11): 44-53.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2016.11.06     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2016/V32/I11/44

[1] Xu K Q, Liao S S Y, Li J X, et al. Mining Comparative Opinions from Customer Reviews for Competitive Intelligence[J]. Decision Support Systems, 2011, 50(4): 743-754.
[2] Rodrigues R G, Dores R M D, Camilo-Junior C G, et al. SentiHealth-Cancer: A Sentiment Anaiysis Tool to Help Detecting Mood of Patients in Online Social Networks[J]. International Journal of Medical Informatics, 2016, 85(1): 80-95.
[3] Salehan M, Kim D J.Predicting the Performance of Online Consumer Reviews: A Sentiment Mining Approach to Big Data Analytic[J]. Decision Support Systems, 2016, 81: 30-40.
[4] Deng X, Chen R.Sentiment Analysis Based Online Restaurants Fake Reviews Hype Detection [C]. In: Proceedings of APWeb 2014: Web Technologies and Applications. Springer International Publishing, 2014: 1-10.
[5] Wallace B C, Paul M J, Sarkar U, et al.A Large-scale Quantitative Analysis of Latent Factors and Sentiment in Online Doctor Reviews[J].Journal of the American Medical Informatics Association, 2014, 21(6): 1098-1103.
[6] 翟东升, 徐颖, 黄鲁成, 等. 基于产品评论挖掘的竞争产品优势分析[J]. 情报杂志, 2013, 32(2): 45-51.
[6] (Zhai Donsheng, Xu Ying, Huang Lucheng, et al.The Advantage Analysis of Competitive Product Based on Product Reviews Mining[J]. Journal of Intelligence, 2013, 32(2): 45-51.)
[7] 施国良, 石桥峰. 基于文本挖掘的不同购物网站商品评论一致性研究[J]. 现代图书情报技术, 2011(12): 64-68.
[7] (Shi Guoliang, Shi Qiaofeng.Text Mining-based Consistency of Product Reviews in Different Shopping Websites[J]. New Technology of Library and Information Service, 2011(12): 64-68.)
[8] 王伟, 王洪伟. 特征观点对购买意愿的影响: 在线评论的情感分析方法[J]. 系统工程理论与实践, 2016, 36(1): 63-76.
[8] (Wang Wei, Wang Hongwei.The Influence of Aspect- based Opinions on User’s Purchase Intention Using Sentiment Analysis of Online Reviews[J]. Systems Engineering-Theory & Practice, 2016, 36(1): 63-76.)
[9] 吴丽华, 冯建平, 曹均阔. 中文网络评论的IT产品特征挖掘及情感倾向性分析[J]. 计算机与数字工程, 2012, 40(11): 52-55.
[9] (Wu Lihua, Feng Jianping, Cao Junkuo.Mining Information Technology Product Features and Sentiment Orientation from Chinese Customer Reviews[J]. Computer & Digital Engineering, 2012, 40(11): 52-55.)
[10] 田雪筠. 面向用户评论的企业竞争情报挖掘研究[J]. 图书馆学研究, 2014(19): 71-78.
[10] (Tian Xueyun.Research on Enterprise Competitive Intelligence Mining Based on User Comments[J]. Library Science Research, 2014(19): 71-78.)
[11] 吴丽云, 陈芳英. 基于网络评论内容分析的餐饮消费者行为研究[J]. 人文地理, 2015, 30(5): 147-152.
[11] (Wu Liyun, Chen Fangying.Research on Catering Consumer Behavior Based on the Content Analysis of Network Evaluation[J]. Human Geography, 2015, 30(5): 147-152.)
[12] 黄卫东, 陈凌云, 吴美蓉.网络舆情话题情感演化研究[J].情报杂志, 2014, 33(1): 102-106.
[12] (Huang Weidong, Chen Lingyun, Wu Meirong.Research on the Sentiment Evolution of Online Public Opinion Topic[J]. Journal of Intelligence, 2014, 33(1): 102-106.)
[13] 倪瑜泽, 彭蓉, 孙栋, 等. 基于用户评论的潜在演化需求发现方法[J]. 武汉大学学报: 理工版, 2015, 61(4): 347-355.
[13] (Ni Yuze, Peng Rong, Song Dong, et al.Potential Evolution Requirements Detect Based on User Comments[J]. Journal of Wuhan University: Natural Science Edtion, 2015, 61(4): 347-355.)
[14] 何天翔, 张晖, 李波, 等. 一种基于情感分析的网络舆情演化分析方法[J]. 软件导刊, 2015, 14(5): 130-134.
[14] (He Tianxiang, Zhang Hui, Li Bo, el at. An Analysis Method of Network Public Opinion Evolution Based on Emotion Analysis[J]. Software Guide, 2015, 14(5): 130-134.)
[15] 李超雄, 黄发良, 温肖谦, 等. 基于动态主题情感混合模型的微博主题情感演化分析方法[J].计算机应用, 2015, 35(10): 2905-2910.
[15] (Li Chaoxiong, Huang Faliang, Wen Xiaoqian, et al.Evolution Analysis Method of Microblog Topic-sentiment Based on Dynamic Topic Sentiment Combining Model[J]. Journal of Computer Applications, 2015, 35(10): 2905-2910.)
[16] R语言实现中文分词[EB/OL]. [2016-06-20]. .
[16] (R Language to Achieve the Chinese Word Segmentation [EB/OL]. [2016-06- 20].
[17] 梁喜涛, 顾磊. 中文分词与词性标注研究[J]. 计算机技术与发展, 2015, 25(2): 175-180.
[17] (Liang Xitao, Gu Lei.Study on Word Segmentation and Part-of-Speech Tagging[J]. Computer Technology and Development, 2015, 25(2): 175-180.)
[18] 情感分析用词语集(beta版)[EB/OL]. [2016-06-22]. .
[18] (Analysis of Emotional Words Set (beta) [EB/OL]. [2016-06-22].
[19] Turney P D, Littman M L.Measuring Praise and Criticism: Inference of Semantic Orientation from Association[J]. ACM Transactions on Information System, 2003, 21(4): 315-346.
[20] 王晓耘, 史玲玲. 基于网络评论情感量化的商品综合评分模型[J]. 杭州电子科技大学学报: 社会科学版, 2016, 12(3): 8-15.
[20] (Wang Xiaoyun, Shi Lingling.A Comprehensive Scoring Model of Products Based on Emotion Quantification of Web Reviews[J]. Journal of Hangzhou Dianzi University: Social Science Edition, 2016, 12(3): 8-15.)
[21] 魏慧玲. 文本情感分析在产品评论中的应用研究[D]. 北京: 北京交通大学, 2014.
[21] (Wei Huiling.Application Research of Text Sentiment Analysis in Product Reviews [D]. Beijing: Beijing Jiaotong University, 2014.)
[22] 单晓红, 杨柳. 网络产品评论挖掘研究[J]. 计算机系统应用, 2014, 23(2): 1-6.
[22] (Shan Xiaohong, Yang Liu.Research on Online Product Review Mining[J]. Computer Systems & Applicantions, 2014, 23(2): 1-6.)
[1] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[2] Xiaozhou Dong,Xinkang Chen. E-Coupon and Economic Performance of E-commerce[J]. 数据分析与知识发现, 2019, 3(6): 42-49.
[3] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[4] Ning Zhang,Lemin Yin,Lifeng He. Impacts of “Poster-Follower” Sentiment on Stock Market Performance[J]. 数据分析与知识发现, 2018, 2(6): 1-12.
[5] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[6] Li Wang,Lixue Zou,Xiwen Liu. Visualizing Document Correlation Based on LDA Model[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
[7] Qiangbing Wang,Chengzhi Zhang. Constructing Users Profiles with Content and Gesture Behaviors[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[8] Xiufang Xie,Xiaolin Zhang. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[9] Yao Zhaoxu,Ma Jing. Extracting Topic and Opinion from Microblog Posts with New Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
[10] Lan Qiujun,Liu Wenxing,Li Weikang,Hu Xingye. Sentiment Analysis of Financial Forum Textual Message[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[11] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[12] Zhao Dongxiao,Wang Xiaoyue,Bai Rujiang,Liu Ziqiang. Semantic Text Mining Methodologies for Intelligence Analysis[J]. 现代图书情报技术, 2016, 32(10): 13-24.
[13] Sui Mingshuang,Cui Lei. Extracting Chemical and Disease Named Entities with Multiple-Feature CRF Model[J]. 现代图书情报技术, 2016, 32(10): 91-97.
[14] Ruyi Yang,Dongsu Liu,Hui Li. An Improved Topic Model Integrating Extra-Features[J]. 现代图书情报技术, 2016, 32(1): 48-54.
[15] Wang Ying, Wu Zhenxin, Xie Jing. Review on Semantic Retrieval System for Scientific Literature[J]. 现代图书情报技术, 2015, 31(5): 1-7.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn