Please wait a minute...
Data Analysis and Knowledge Discovery  2016, Vol. 32 Issue (12): 36-43    DOI: 10.11925/infotech.1003-3513.2016.12.05
Orginal Article Current Issue | Archive | Adv Search |
Recognizing Chinese Organization Names Based on Deep Learning: A Recurrent Network Model
Danhao Zhu1,2(),Lei Yang3,Dongbo Wang4
1Library of Jiangsu Police Institute, Nanjing 210031, China
2Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China
3Department of High Education, College of Nanjing Traffic Technician, Nanjing 210049, China
4College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Download: PDF(526 KB)   HTML ( 48
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective]Chinese organization names are difficult to be recognized by computers due to their complex structures and using of rare words. Successful recognition of these names plays significant roles in information extraction and retrieval, knowledge mining as well as institution research evaluation. [Methods] First, we redefined the input and output of organization names based on recurrent neural network method and nature of Chinese words or phrases. Second, we proposed a new model at the word level. [Results] Compared to the recurrent network models at the phrase level, the proposed method significantly improved the precision, recall and F value. Among them, the F value increased 1.54%. For organization names with rare words, the F value increased by 11.05%. [Limitations] We adopted a greedy strategy to find the local optimal values. A conditional random field method will yield better results from the global perspective. [Conclusions] The proposed method, which uses Chinese word level features, is easy to be implemented, and could generate better results than its phrase based counterparts.

Key wordsOrganization recognition      Recurrent Neural Network      Deep learning     
Received: 01 August 2016      Published: 22 January 2017

Cite this article:

Danhao Zhu, Lei Yang, Dongbo Wang. Recognizing Chinese Organization Names Based on Deep Learning: A Recurrent Network Model. Data Analysis and Knowledge Discovery, 2016, 32(12): 36-43.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2016.12.05     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2016/V32/I12/36

[1] 沈嘉懿, 李芳, 徐飞玉, 等. 中文组织机构名称与简称的识别[J]. 中文信息学报, 2007, 21(6): 17-21.
[1] (Shen Jiayi, Li Fang, Xu Feiyu, et al.Recognition of Chinese Organization Names and Abbreviations[J]. Journal of Chinese Information Processing, 2007, 21(6): 17-21.)
[2] 周俊生, 戴新宇, 尹存燕, 等. 基于层叠条件随机场模型的中文机构名自动识别[J]. 电子学报, 2006, 34(5): 804-809.
[2] (Zhou Junsheng, Dai Xinyu, Yin Cunyan, et al.Automatic Recognition of Chinese Organization Name Based on Cascaded Conditional Random Fields[J]. Acta Electronica Sinica, 2006, 34(5): 804-809.)
[3] 黄德根, 李泽中, 万如. 基于SVM和CRF的双层模型中文机构名识别[J]. 大连理工大学学报, 2010, 50(5): 782-787.
[3] (Huang Degen, Li Zezhong, Wan Ru.Chinese Organization Name Recognition Using Cascaded Model Based on SVM and CRF[J]. Journal of Dalian University of Technology, 2010, 50(5): 782-787.)
[4] 滕青青, 吉久明, 郑荣廷, 等.基于文献的中文命名实体识别算法适用性分析研究[J]. 情报杂志, 2010, 29(9): 157-161.
[4] (Teng Qingqing, Ji Jiuming, Zheng Yongting, et al.Applicability Analysis of Chinese Named Entity Recognition Method Based on Literatures[J]. Journal of Intelligence, 2010, 29(9): 157-161.)
[5] Huang Z, Xu W, Yu K.Bidirectional LSTM-CRF Models for Sequence Tagging [OL]. arXiv Preprint.arXiv: 1508.01991.
[6] Chen X, Qiu X, Zhu C, et al.Gated Recursive Neural Network for Chinese Word Segmentation [C]. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015: 1744-1753.
[7] Chen X, Xu L, Liu Z, et al.Joint Learning of Character and Word Embeddings [C]. In: Proceedings of the 24th International Conference on Artificial Intelligence. 2015: 1236-1242.
[8] Sun Y, Lin L, Yang N, et al.Radical-enhanced Chinese Character Embedding [C]. In: Proceedings of the International Conference on Neural Information Processing. Springer International Publishing, 2014: 279-286.
[9] 孙镇, 王惠临. 命名实体识别研究进展综述[J]. 现代图书情报技术, 2010(6): 42-47.
[9] (Sun Zhen, Wang Huilin.Overview on the Advance of the Research on Named Entity Recognition[J]. New Technology of Library and Information Service, 2010(6): 42-47.)
[10] 潘正高. 基于规则和统计相结合的中文命名实体识别研究[J]. 情报科学, 2012, 30(5): 708-712.
[10] (Pan Zhenggao.Research on the Recognition of Chinese Named Entity Based on Rules and Statistics[J]. Information Science, 2012, 30(5): 708-712.)
[11] 陆伟, 鞠源, 张晓娟, 等. 产品命名实体特征选择与识别研究[J]. 图书情报知识, 2012(3): 4-12.
[11] (Lu Wei, Ju Yuan, Zhang Xiaojuan, et al.Research on Product Named Entity Feature Selection and Recognition[J]. Document, Information & Knowledge, 2012(3): 4-12.)
[12] 吴丹, 何大庆, 陆伟. 跨语言信息检索中的命名实体识别与翻译[J]. 图书情报知识, 2012(3): 13-19.
[12] (Wu Dan, He Daqing, Lu Wei.The Extraction and Translation of Named Entity in Cross Language Information Retrieval[J]. Document, Information & Knowledge, 2012(3): 13-19.)
[13] 王文龙, 王东波. 面向项目申请书的命名实体抽取模型构建研究[J]. 情报资料工作, 2015(1): 30-34.
[13] (Wang Wenlong, Wang Dongbo.Project Application-oriented Named Entity Extraction Model Construction[J]. Information and Documentation Services, 2015(1): 30-34.)
[14] 陈锋, 翟羽佳, 王芳. 基于条件随机场的学术期刊中理论的自动识别方法[J]. 图书情报工作, 2016, 60(2): 122-128.
[14] (Chen Feng, Zhai Yujia, Wang Fang.Automatic Theory Recognition in Academic Journals Based on CRF[J]. Library and Information Service, 2016, 60(2): 122-128.)
[15] 俞鸿魁, 张华平, 刘群.基于角色标注的中文机构名识别[C]. 见: 第 20 届东方语言计算机处理国际会议论文集. 2003: 79-87.
[15] (Yu Hongkui, Zhang Huaping, Liu Qun.Recognition of Chinese Organization Name Based on Role Tagging [C]. In: Proceedings of the 20th International Conference on Computer Processing of Oriental Languages. 2003: 79-87.)
[16] 关晓炟, 吕学强, 李卓, 等. 用户查询日志中的中文机构名识别[J]. 现代图书情报技术, 2014(1): 72-78.
[16] (Guan Xiaoda, Lv Xueqiang, Li Zhuo, et al.Chinese Organization Name Recognition in User Query Log[J]. New Technology of Library and Information Service, 2014(1): 72-78.)
[17] Huang Z, Xu W, Yu K.Bidirectional LSTM-CRF Models for Sequence Tagging [OL]. arXiv: 1508.01991.
[18] Ma X, Hovy E.End-to-End Sequence Labeling via Bi-directional LSTM-CNNs-CRF [OL]. arXiv Preprint. arXiv: 1603.01354.
[19] Hochreiter S, Schmidhuber J.Long Short-term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[20] Sutskever I, Vinyals O, Le Q V.Sequence to Sequence Learning with Neural Networks [A]. //Advances in Neural Information Processing Systems[M]. 2014: 3104-3112.
[21] Pascanu R, Mikolov T, Bengio Y.On the Difficulty of Training Recurrent Neural Networks[J]. Journal of Machine Learning Research, 2013, 28(3): 1310-1318.
[22] Srivastava N, Hinton G, Krizhevsky A, et al.Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[1] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[2] Jingjing Pei,Xiaoqiu Le. Identifying Coordinate Text Blocks in Discourses[J]. 数据分析与知识发现, 2019, 3(5): 51-56.
[3] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[4] Changlei Fu,Li Qian,Huaping Zhang,Huaming Zhao,Jing Xie. Mining Innovative Topics Based on Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
[5] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[6] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[7] Guoming Feng,Xiaodong Zhang,Suhui Liu. Classifying Chinese Texts with CapsNet[J]. 数据分析与知识发现, 2018, 2(12): 68-76.
[8] Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian,Shaozhong Wu,Lihua Li. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[9] Wengang Feng,Jing Huang. Early Warning for Civil Aviation Security Checks Based on Deep Learning[J]. 数据分析与知识发现, 2018, 2(10): 46-53.
[10] Jiaheng Hu,Yonghua Cen,Chengyao Wu. Constructing Sentiment Dictionary with Deep Learning: Case Study of Financial Data[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[11] Sanhong Deng,Yuyangzi Fu,Hao Wang. Multi-Label Classification of Chinese Books with LSTM Model[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
[12] Liyi Zhang,Chang Liu. Combine Deep Belief Networks and Fuzzy Set for Recognition of Fraud Transaction[J]. 现代图书情报技术, 2016, 32(1): 32-39.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn