Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (2): 11-18    DOI: 10.11925/infotech.2096-3467.2017.02.02
Orginal Article Current Issue | Archive | Adv Search |
An Early Warning Algorithm for Public Opinion of Safety Emergency
Tian Shihai, Lyu Deli()
School of Management, Harbin University of Science and Technology, Harbin 150040, China
Download: PDF (1443 KB)   HTML ( 26
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This study proposes a new early warning model to track the public sentiment online, aiming to improve transparency and responding speed of the safety emergencies. [Methods] We used the modified LSA+SVM algorithm to build an early warning model, which retrieved public opinion data by meta search. [Results] We examined the new model with three different incidents, and found it was practical and fast. The precision rate was 85.75% when the semantic dimension was kept at 10. [Limitations] This method was more effective for the safety incidents drawing public attention and discussion. [Conclusions] The proposed algorithm helps us build an early warning system for public opinion, which provides suggestions to related companies and government organizations.

Key wordsLatent Semantic Analysis(LSA)      Support Vector Machine(SVM)      Public Opinion Early Warning      Emotional Orientation Analysis     
Received: 29 August 2016      Published: 27 March 2017
ZTFLH:  G203  

Cite this article:

Tian Shihai,Lyu Deli. An Early Warning Algorithm for Public Opinion of Safety Emergency. Data Analysis and Knowledge Discovery, 2017, 1(2): 11-18.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.02.02     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I2/11

突发性安全事件 负面文档
占比(%)
中性文档
占比(%)
正面文档
占比(%)
百度“莆田系”事件 59.8 6.7 33.5
滨海化工厂泄露事件 65.5 27.3 7.2
蒙牛黄曲霉素事件 76.3 9.8 13.9
突发性安全事件 主要舆情词汇 舆情等级 区间 数量 是否含基准偏移值
百度“莆田系”
事件
作恶; 丑闻; 互相勾结; 虚假宣传; 垂死挣扎; 医疗伦理缺失; 无底线; 贪心; 造假系; 谋财害命; 毒瘤; 作孽; 肮脏的广告手段; 不道德; 放纵; 缺乏监督; 不作为 S [-1, -0.8) 31 Y
A [-0.8, -0.6) 29 N
B [-0.6, -0.4) 21 N
C [-0.4, -0.2) 13 N
D [-0.2, 0.1) 7 N
滨海化工厂
泄露事件
毒害百姓; 强烈抗议; 生命财产得不到保护; 气味刺鼻; 恶心头晕; 告状无门; 不顾百姓死活; 隐患巨大; 污染; 寝食难安; 惨烈; 极度危险; 扼腕堵心; 吸取教训 S [-1, -0.8) 41 Y
A [-0.8, -0.6) 27 Y
B [-0.6, -0.4) 25 N
C [-0.4, -0.2) 8 N
D [-0.2, 0.1) 20 N
蒙牛黄曲
霉素事件
无需怜悯; 毫无原则; 显然不足以说服公众; 严重威胁生命安全; 空头文件; 一纸空文; 吃惊; 一而再再而三; 犯错成本实在太低; 重大缺陷; 不能用道歉来消除; 最强化学致癌物; 信心脆弱 S [-1, -0.8) 37 Y
A [-0.8, -0.6) 35 Y
B [-0.6, -0.4) 30 N
C [-0.4, -0.2) 21 N
D [-0.2, 0.1) 15 N
[1] 吴鹏, 杨爽, 张晶晶, 等. 突发事件网络舆情中网民群体行为演化的Agent 建模与仿真研究[J]. 现代图书情报技术, 2015(7/8): 65-72.
[1] (Wu Peng, Yang Shuang, Zhang Jingjing, et al.Agent-Based Modeling and Simulation of Evolution of Netizen Crowd Behavior in Unexpected Events Public Opinion[J]. New Technology of Library and Information Service, 2015 (7/8): 65-72.)
[2] Li W, Miao D, Wang W.Two Level Hierarchical Combination Method for Text Classification[J]. Expert Systems with Applications, 2011, 38(3): 2030-2039.
doi: 10.1016/j.eswa.2010.07.139
[3] 王兰成. 基于网络舆情分析的突发事件情报支援研究[J]. 情报理论与实践, 2015, 38(7): 72-75.
doi: 10.16353/j.cnki.1000-7490.2015.07.014
[3] (Wang Lancheng.Research on Emergency Information Support Based on Network Public Opinion Analysis[J]. Information Studies: Theory & Application, 2015, 38(7): 72-75.)
doi: 10.16353/j.cnki.1000-7490.2015.07.014
[4] Papetti P, Costa C, Antonucci F, et al.A RFID Web-based Infotracking System for the Artisanal Italian Cheese Quality Trace Ability[J]. Food Control, 2012, 27(1): 234-241.
doi: 10.1016/j.foodcont.2012.03.025
[5] 董凯欣, 傅荧, 孙晓峰, 等. 基于社会网络分析的企业网络舆情预警机制研究——以食品安全网络舆情为例[J]. 电子商务, 2015, 23(8): 54-55, 57.
doi: 10.3969/j.issn.1009-6108.2015.08.027
[5] (Dong Kaixin, Fu Ying, Sun Xiaofeng, et al.Research on Early Warning Mechanism of Enterprise Public Opinion Based on Social Network Analysis[J]. E-Business Journal, 2015, 23(8): 54-55, 57.)
doi: 10.3969/j.issn.1009-6108.2015.08.027
[6] 陈福集, 陈婷. 舆情突发事件演化探析——基于意见领袖引导作用视角[J]. 情报资料工作, 2012, 36(2): 23-28.
[6] (Chen Fuji, Chen Ting.Research on Public Opinion Emergencies Evolution: Based on the Perspective of Opinion Leaders Guiding Role[J]. Information and Documentation Services, 2012, 36(2): 23-28.)
[7] 宣云干, 朱庆华. 基于LSA的社会化标注系统标签语义检索研究[J]. 图书情报工作, 2011, 55(4): 11-14.
[7] (Xuan Yungan, Zhu Qinghua.Research on Tag Semantic Retrieval in Social Tagging System Based on LSA[J]. Library and Information Service, 2011, 55(4): 11-14.)
[8] 范玉华, 秦世引. 基于潜在语义分析的场景分类优化决策方法[J]. 计算机辅助设计与图形学学报, 2013, 25(2): 175-182.
doi: 10.3969/j.issn.1003-9775.2013.02.006
[8] (Fan Yuhua, Qin Shiyin.Optimizing Decision for Scene Classification Based on Latent Semantic Analysis[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(2): 175-182.)
doi: 10.3969/j.issn.1003-9775.2013.02.006
[9] 商丽媛, 谭清美. 基于支持向量机的突发事件分级研究[J]. 管理工程学报, 2014, 28(1): 119-123.
[9] (Shang Liyuan, Tan Qingmei.Emergency Classification Based on Support Vector Machine[J]. Journal of Industrial Engineering and Engineering Management, 2014, 28(1): 119-123.)
[10] 张建娥. 基于TFIDF和词语关联度的中文关键词提取方法[J]. 情报科学, 2012, 30(10): 1542-1555.
[10] (Zhang Jian’e.A Chinese Keywords Extraction Approach Based on TFIDF and Word Correlation[J]. Information Science, 2012, 30(10): 1542-1555.)
[11] 张长利. 面向特定领域的互联网舆情分析技术研究[D]. 长春: 吉林大学, 2011.
[11] (Zhang Changli.Research on Domain- Oriented Public Sentiment Analysis Technologies [D]. Changchun: Jilin University, 2011.)
[12] 高宏岩, 王建辉. 在线自调整修正因子模糊控制方法和应用[J]. 微计算机信息, 2006, 22(13): 83-84.
doi: 10.3969/j.issn.1008-0570.2006.13.031
[12] (Gao Hongyan, Wang Jianhui.A Fuzzy Control Method with Online Self-turning Correction Factor and Its Application[J]. Microcomputer Information, 2006, 22(13): 83-84.)
doi: 10.3969/j.issn.1008-0570.2006.13.031
[13] Goñi S M, Oddone S, Segura J A.Prediction of Foods Freezing and Thawing Times: Artificial Neural Networks and Genetic Algorithm Approach[J]. Journal of Food Engineering, 2011, 84(1): 164-178.
doi: 10.1007/s11947-010-0401-x
[14] 谭光兴, 刘臻晖. 基于SVM的局部潜在语义分析算法研究[J]. 计算机工程与科学, 2016, 38(1): 177-182.
doi: 10.3969/j.issn.1007-130X.2016.01.029
[14] (Tan Guangxing, Liu Zhenhui.A Local Latent Semantic Analysis Algorithm Based on Support Vector Machine[J]. Computer Engineering and Science, 2016, 38(1): 177-182.)
doi: 10.3969/j.issn.1007-130X.2016.01.029
[15] Sengupta A S, Balaji M S, Krishnan B C.How Customers Cope with Service Failure? A Study Does Brand Reputation and Customer Satisfaction[J]. Journal of Business Research, 2015, 68(3): 655-674.
doi: 10.1007/978-3-319-10951-0_253
[16] 朱舸, 齐佳音. 企业危机事件网络舆情态势评估[J]. 情报科学, 2015, 33(6): 48-53.
[16] (Zhu Ge, Qi Jiayin.Situation Evaluation of Online Public Opinion on Enterprise Crisis Event[J]. Information Science, 2015, 33(6): 48-53.)
[17] 马宁, 刘怡君. 基于超网络的舆情演化多主体建模[J]. 系统管理学报, 2015, 24(6): 785-804.
[17] (Ma Ning, Liu Yijun.Multi-Agent Modeling of Public Opinion Evolution Based on SuperNetwork Analysis[J]. Journal of Systems & Management, 2015, 24(6): 785-804.)
[1] Zhao Yiping,Bi Qiang. Using Linked Data to Retrieve Similar Documents from the Academic Resource Websites[J]. 现代图书情报技术, 2016, 32(3): 41-49.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn