Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (2): 28-34    DOI: 10.11925/infotech.2096-3467.2017.02.04
Orginal Article Current Issue | Archive | Adv Search |
Extracting Keywords with Modified TextRank Model
Tian Xia()
Key Laboratory of Data Engineering and Knowledge Engineering of Ministry of Education, Renmin University of China, Beijing 100872, China
School of Information Resource Management, Renmin University of China, Beijing 100872, China
Download: PDF(793 KB)   HTML ( 41
Export: BibTeX | EndNote (RIS)      

[Objective] This study aims to improve the single document keyword extraction algorithm by adding the world knowledge vector from the Wikipedia to the TextRank model. [Methods] First, we created a new word embedding model based on the Word2Vec model with Wikipedia’s Chinese data. Second, we clustered the nodes of TextRank wordgraph to adjust the voting importance of each cluster. Third, we calculated the random walk probability with additional factors of coverage and location. Finally, we got the node score with iterative computation of the transition matrix, and then selected the Top N words as the needed keywords. [Results] The performance of the new TextRank model was much better than other methods when the Top N value was less than or equal to 7. If we only retrieved three keywords, the F measure reached its maximum value, which was 3.374% higher than the best existing results. When the Top N value was larger than 7, the results were similar to the traditional TextRank method. [Limitations] The computation cost was increased due to the cluster analysis. [Conclusions] The new weighted TextRank model could extract keywords effectively.

Key wordsKeyword Extraction      Word Embedding      TextRank      Word2vec     
Received: 28 October 2016      Published: 27 March 2017

Cite this article:

Tian Xia. Extracting Keywords with Modified TextRank Model. Data Analysis and Knowledge Discovery, 2017, 1(2): 28-34.

URL:     OR

[1] Mihalcea R, Tarau P.Textrank: Bringing Order into Texts[C]//Proceedings of Empirical Methods in Natural Language Processing. 2004.
[2] 夏天. 词语位置加权TextRank的关键词抽取研究[J]. 现代图书情报技术, 2013 (9): 30-34.
[2] (Xia Tian.Study on Keyword Extraction Using Word Position Weighted TextRank[J]. New Technology of Library and Information Service, 2013 (9): 30-34.)
[3] 顾益军, 夏天. 融合LDA与TextRank的关键词抽取研究[J]. 现代图书情报技术, 2014 (7/8): 41-47.
[3] (Gu Yijun, Xia Tian.Study on Keyword Extraction with LDA and TextRank Combination[J]. New Technology of Library and Information Service, 2014(7/8): 41-47.)
[4] 李鹏, 王斌, 石志伟, 等. Tag-TextRank: 一种基于Tag的网页关键词抽取方法[J]. 计算机研究与发展, 2012, 49(11): 2344-2351.
[4] (Li Peng, Wang Bin, Shi Zhiwei, et al.Tag-TextRank: A Webpage Keyword Extraction Method Based on Tags[J]. Journal of Computer Research and Development, 2012, 49(11): 2344-2351.)
[5] 谢玮, 沈一, 马永征. 基于图计算的论文审稿自动推荐系统[J]. 计算机应用研究, 2016, 33(3): 798-801.
[5] (Xie Wei, Shen Yi, Ma Yongzheng.Recommendation System for Paper Reviewing Based on Graph Computing[J]. Application Research of Computers, 2016, 33(3): 798-801.)
[6] 李跃鹏, 金翠, 及俊川. 基于Word2vec的关键词提取算法[J]. 科研信息化技术与应用, 2015, 6(4): 54-59.
[6] (Li Yuepeng, Jin Cui, Ji Junchuan.A Keyword Extraction Algorithm Based on Word2vec[J]. e-Science Technology & Application, 2015,6(4): 54-59.)
[7] 宁建飞, 刘降珍. 融合Word2vec与TextRank的关键词抽取研究[J]. 现代图书情报技术, 2016 (6): 20-27.
[7] (Ning Jianfei, Liu Jiangzhen.Using Word2vec with TextRank to Extract Keywords[J]. New Technology of Library and Information Service, 2016(6): 20-27.)
[8] Mikolov T, Chen K, Corrado G, et al.Efficient Estimation of Word Representations in Vector Space[C]//Proceedings of Workshop at International Conference on Learning Representations. 2013.
[9] Ansj Lexical Parser [EB/OL]. [2016-10-01]..
[10] Deep Learning with Word2vec [EB/OL]. [2016-10-01]. .
[1] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] Peiyao Zhang,Dongsu Liu. Topic Evolutionary Analysis of Short Text Based on Word Vector and BTM[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[3] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[4] Zhuchen Liu,Hao Chen,Yanhua Yu,Jie Li. Extracting Keywords with TextRank and Weighted Word Positions[J]. 数据分析与知识发现, 2018, 2(9): 74-79.
[5] Xinlei Li,Hao Wang,Xiaomin Liu,Sanhong Deng. Comparing Text Vector Generators for Weibo Short Text Classification[J]. 数据分析与知识发现, 2018, 2(8): 41-50.
[6] Lin Li,Hui Li. Computing Text Similarity Based on Concept Vector Space[J]. 数据分析与知识发现, 2018, 2(5): 48-58.
[7] Tingting Wang,Man Han,Yu Wang. Optimizing LDA Model with Various Topic Numbers: Case Study of Scientific Literature[J]. 数据分析与知识发现, 2018, 2(1): 29-40.
[8] Yongbing Gao,Guipeng Yang,Di Zhang,Zhanfei Ma. Detecting Events from Official Weibo Profiles Based on Post Clustering with Burst Words[J]. 数据分析与知识发现, 2017, 1(9): 57-64.
[9] Qin Zhang,Hongmei Guo,Zhixiong Zhang. Extracting Entity Relationship with Word Embedding Representation Features[J]. 数据分析与知识发现, 2017, 1(9): 8-15.
[10] Zixuan Wang,Xiaoqiu Le,Yuanbiao He. Recognizing Core Topic Sentences with Improved TextRank Algorithm Based on WMD Semantic Similarity[J]. 数据分析与知识发现, 2017, 1(4): 1-8.
[11] Ruilun Liu,Wenhao Ye,Ruiqing Gao,Mengjia Tang,Dongbo Wang. Research on Text Clustering Based on Requirements of Big Data Jobs[J]. 数据分析与知识发现, 2017, 1(12): 32-40.
[12] Luo Wenxin,Chen Chong,Deng Siyi. Detecting Disease Associations with Word2Vec from Consumer Health Information[J]. 现代图书情报技术, 2016, 32(9): 78-87.
[13] Ning Jianfei,Liu Jiangzhen. Using Word2vec with TextRank to Extract Keywords[J]. 现代图书情报技术, 2016, 32(6): 20-27.
[14] Qun Zhang, Hongjun Wang, Lunwen Wang. Classifying Short Texts with Word Embedding and LDA Model[J]. 数据分析与知识发现, 2016, 32(12): 27-35.
[15] Gu Yijun, Xia Tian. Study on Keyword Extraction with LDA and TextRank Combination[J]. 现代图书情报技术, 2014, 30(7): 41-47.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938